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Machine learning is a versatile tool allowing for, among other things, training
intelligent agents capable of autonomously acting in their environments. In
particular, Multiagent Reinforcement Learning has made tremendous progress
enabling such agents to interact with one another in an effective manner.
One of the challenges that this field is still facing, however, is the problem of
ad-hoc cooperation, or cooperation with agents that have not been previously
encountered.
This thesis explores one possible approach to tackle this issue, using the
psychology-inspired idea of Theory of Mind. Specifically, a component de-
signed to explicitly model the skill level of the other agent is included, to
allow the primary agent to better choose its actions.
The results show that this approach does in fact facilitate better coordination
in an environment designed to test this skill, and is a promising method for
more complicated scenarios.
The potential applications can be found in any situation that requires coordi-
nation between multiple intelligent agents (which may also include humans),
such as traffic coordination between autonomous vehicles, or rescue operations
where autonomous agents and humans have to work together to efficiently
search an area.
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1 Introduction

The problem of cooperation between intelligent agents (including humans) is
one of the biggest challenges facing AI research in recent years [1]. In many
fields it is desirable to have autonomous agents capable of cooperating with
arbitrary other agents in an efficient and safe manner, but that skill is far from
trivial and requires specially designed approaches that take into consideration
the unpredictability of other agents.

As an example, consider self-driving cars. If, at some point, one AV (Au-
tonomous Vehicle) manufacturer obtains a 100% market share and pushes any
competition out of the picture, it can have complete control over coordination
protocols, explicit or implicit – however this is unlikely to be the case. In the
foreseeable future, AVs will need to share roads not only with other AVs, but
also with humans, and humans are anything but predictable [2]. And yet, they
mostly manage to intuitively understand other members of traffic, avoiding too
many collisions.

One mechanism that seems to contribute to this phenomenon in humans is
the so called Theory of Mind [3]. It describes the way that people internally
impute mental states to others in a way that, while not directly observable,
allows to make predictions on their behaviors. It has been extensively studied
and observed to happen both in humans and other primates, and recently it was
also shown that it is possible to create AI systems that can exhibit ToM-like
properties when observing artificial agents [4].

The main approach to creating artificial autonomous agents is Reinforce-
ment Learning (RL) [5], in which the key idea is trial and error. By taking
(at first, randomly) actions in the environment and combining them with ob-
tained rewards, it can be inferred which actions were beneficial, and which were
harmful. After collecting a batch of experience, the agent is modified to take
better actions, and the cycle continues.

In particular,Deep Reinforcement Learning (DRL) is a way of training
RL agents by using deep neural networks. This approach has proven to be
effective, for example in the games of Chess and Go [6], in Atari games [7] and
in the multiplayer game DOTA 2 [8]. Some approaches to DRL involve learning
the expected value of each state of the environment, which is then used to
choose the next action. Others, which will be the focus here, directly optimize
a policy function mapping states to actions so that it reaches a maximal reward
on average.
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When several agents are acting together in a single environment, Multia-
gent Reinforcement Learning (MARL) [9] becomes relevant. This carries
many new challenges, such as non-stationarity [10] and the lazy agent problem
[11] which makes it more difficult to accurately perform credit assignment.

Machine Learning [12] is a fundamental concept underlying Reinforcement
Learning describing a mechanism for building programs (or mathematical
models) which are not fully specified by the human designer. Instead, they only
provide a general structure of the algorithm, and then selecting its parameter
via an automatic process of training given some data.

Deep Learning [13] is a modern take on Machine Learning, where deep
neural networks are utilised. They’re extremely versatile algorithms that can
be adapted for all sorts of applications like Computer Vision [14], Natural
Language Processing [15], Visual Understanding [16], Reinforcement Learning
[7] and more. They are also proven to be capable of approximating arbitrary
functions with enough hidden units and given sufficient data [17].

The problem of ad-hoc multiagent cooperation can also be seen as a form of
meta-learning, which is a general way of training agents on a variety of tasks, so
that they can efficiently solve other, previously unseen tasks [18]. In this case,
each potential partner agent is a different task (in the meta-learning sense), so
by learning to cooperate with various partners, the agent can become better at
cooperating with new ones.

An interesting property of multiagent learning systems trained via self-play
is that they develop autocurricula [19] allowing for an emergent progression from
simple to complex challenges. In competitive games, this can be understood as
the fact that since the agent is its own opponent, it has to learn to counter any
new strategy it creates. In a cooperative setting, it can take the form of social
dilemmas, where agents need to make a choice between their self-interest and
the collective goal.

This thesis focuses on the applications of ToM-based approaches to improve
RL-produced agents’ ability to cooperate with other agents that have not
previously been encountered in the training process. In particular, the skill
level of an agent is postulated to be a metric that’s relevant for decision-making
that involves cooperation.

To evaluate this hypothesis, I tested a neural network architecture designed
to explicitly learn to estimate the other agent’s skill level, and then use that
information in deciding the policy. The agent is then evaluated with a range of
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partner agents on various skill levels.
All of that is performed in an gridworld-based environment, following

common practices of AI Safety research [20] for testing novel ideas. The agents
cooperate in a task of foraging their world for subgoals, and then reaching a
final goal, while sharing the reward signal making it a fully cooperative setting.

1.1 Thesis goals and problem statement

The main goal of this thesis is exploring a new way of facilitating cooperation in
multiagent reinforcement learning system by introducing a component dedicated
to learning the skill level of its partner. This architecture is then evaluated in
specially designed environments, and compared both with a baseline model,
and one that receives the skill level as an input.

Leading up to this, I describe the theory of Reinforcement Learning and
its multiagent variant, including the standard approaches and formalism, as
well as less-known techniques that are relevant for the experiments, such as the
Relation Network.

1.2 Structure

The theoretical background on Machine Learning and Neural Networks is
introduced in Section 2, followed by a description of Reinforcement Learning,
including the problem formalism and standard algorithms in Section 3.

Following that, Section 4 describes the experimental setup, consisting of
the environment in which the RL agents act, the architecture of the agents
themselves and the training procedures for policy optimization.

Section 5 describes the results of the aforementioned experiments, and
Section 6 wraps everything up with a summary of the entire work.
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2 Machine Learning

The goal of this and the following section is building up a coherent theory
of all the key concepts used in this thesis, with as much mathematical rigor
as reasonably possible. In the end, all the necessary notation should be
introduced, justified and ready to be used in the description of the actual task
and experimental design. To this end, I’ll take a bottom-up approach, starting
from elementary concepts, and ending with the specific niche of Multiagent
Reinforcement Learning.

Machine Learning in its most general form can be described as a set of
methods and algorithms that are only specified with a general architecture
and a certain objective, and then use data to fully specify the algorithm in
the process of training. It is generally divided into three parts: supervised
learning where the data includes specific labels that are to be learned, unsu-
pervised learning where the data doesn’t contain a uniquely given objective,
and reinforcement learning, the focus of this work, where the algorithm
interacts with an environment, generating its own data, optimizing for a given
reward function. Due to their respective relevance, I will provide a brief de-
scription of supervised learning now, skip unsupervised learning, and expand
on reinforcement learning further on in this section.

2.1 Supervised Learning

In this setting, the task can be described function approximation. Given an
input space X , an output space Ŷ, a label space Y, a dataset D = {(xi, yi)}
where xi ∈ X , yi ∈ Y, and a loss function L : Ŷ × Y → R, you want to find
a function f : X → Ŷ called a model that minimizes the mean loss over the
dataset:

1
D̄

D̄∑
i=1
L(f(xi), yi)

Note that it is not true that Y = Ŷ even though quite often it happens to be
the case, e.g. in regression problems where Y = Ŷ = R. In the other main type
of supervised learning, which is classification, the label space is a discrete set of
categories C such that C̄ = M <∞. The output space can be the real vector
space Ŷ = RM ∼= (C → R) interpreted as log-probabilities of a distribution from
the set of all probability distributions on C, denoted ∆C. It’s also isomorphic
to the set of functions C → R mapping each category to its log-probability.
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However, in this case we can choose a selection function ι : Ŷ → Y that maps
the model’s predictions to actual labels, e.g. ι(ŷ) = arg max ŷ choosing the
highest-probability element in C.

An important concept to keep in mind when talking about Machine Learning
is generalization, since in actual use cases, we want the algorithm to work
well also on new, previously unseen inputs. That’s why it is useful to view
the dataset D as a finite random sample from a joint probability distribution
p(x, y). In this case, the task is to find a good approximation of the conditional
probability p(y|x), quantified as minimizing the expected loss

E
x,y∼p(x,y)

L(f(x), y)

With this formulation, it is no longer sufficient to just set ∀(xi,yi)∈Df(xi) := yi,
which is the trivial solution to the problem with a finite dataset. Instead, the
model needs to, in a sense, understand the underlying structure of the dataset
so that it performs well on the entire distribution.

2.2 Neural Networks

A neural network is a versatile machine learning algorithm that can be applied
to supervised, unsupervised and reinforcement learning. It is a parametrized
function composed of one or more layers, with each layer being a linear trans-
formation followed by an activation function applied component-wise to its
output.

If, as is usually the case, the input and output spaces are real vector spaces,
we have X = RN and Ŷ = RM . In the most common variant of a neural
network called the multi-layer perceptron (MLP), the n-th layer can be then
expressed as

xn = g(Wnxn−1 +Bn) (1)

where xn is called the n-th hidden layer (with x0 = x being the input to the
network), g(·) : Rln → Rln is an activation function, ln is the size of the n-th
layer such that xn ∈ Rln . The parameters of the layer are the weight matrix
Wn ∈ Rln×ln−1 and the bias vector Bn ∈ Rxn . Often, the weight and the bias
are collectively referred to as the weights of the layer (or of the network) and
are denoted by θ.

Quite often, the activation function is in fact just a function g : R → R,
and is applied to the input vector elementwise, by considering each component
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separately. It also needs to be differentiable w.r.t. its input almost everywhere,
which will be necessary for training the network. The most common choice
is ReLU (Rectified Linear Unit) [13] defined as ReLU(x) = max(0, x). It
corresponds a very rough idea of a biological neuron, where the inputs are
summed, and if the total exceeds some threshold, the neuron fires proportionally
to the inputs.1 Other common choices include the hyperbolic tangent tanh(x) =
ex−e−x
ex+e−x and the sigmoid function σ(x) = 1

1+e−x . In Figure 1 you can see a visual
comparison of each of these functions.

Figure 1: A comparison of the most commonly used activation functions:
ReLU, tanh and sigmoid. Note that the sigmoid function is the only one where
f(0) 6= 0 which can cause issues in deep networks, but it does fulfill the property
∀x∈R 0 < f(x) < 1 which makes it suitable as a final activation function in
situations where we want the output to be interpretable as a probability.

A Feedforward Neural Network, or Deep Neural Network, can then be
constructed by stacking several linear transforms as defined in Equation 1
interspersed by activation functions. The word “deep” here refers to the
number of layers – the depth of the network. The dimensionality of each
hidden representation hn is called the width of the layer, or the number of
hidden units. This is the same as the size of the xn activation vector. A simple
schematic representation of a neural network can be seen in Figure 2.

In summary, a neural network can be viewed as a parametrized function
NNθ(x) differentiable almost everywhere w.r.t. θ and x, with a specific layer-
based internal structure that allows for flexibility and modularity (note: NN′θ′ ◦

1Keep in mind, this is not how biological neurons actually work – but it works well for
artificial neural networks, and biological accuracy is not a goal in itself.
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NNθ is also a neural network as long as the dimension of the output of NNθ is
the same as the dimension of the input of NN′θ′).

Figure 2: A graphical representation of a neural network. Each node represents
one component of a vector (either input, hidden or output), and each edge
represents a component of a weight matrix.

2.2.1 Gradient Descent

By far the most common way of training neural networks – by which I mean,
finding a set of weights for which the network manages to approximate the
target distribution p(y|x) – is the Gradient Descent algorithm, or one of
the many algorithms that are based on it. At its heart, it is a fairly simple
idea dating back to Augustin-Louis Cauchy in 1847 [21] when he applied it
to the problem of solving systems of simultaneous equations. To describe it
informally: first, you choose an arbitrary argument (here: arbitrary weights) as
a starting point. Then, evaluate the gradient of the loss function at that point,
and update the weights in the direction of the negative gradient – and repeat
until convergence. A more formal description can be found in Algorithm 1.

In practice, a commonly used approach is called Stochastic Gradient Descent
(SGD), where instead of computing the gradient using the entire dataset at
once, only a subset (or batch) of data is used at each iteration. This allows for
more frequent updates, and counteracts overfitting due to extra stochasticity.

2.2.2 Adam optimizer

In many applications, including this work, the Gradient Descent algorithm only
describes the main idea of the optimization method. The exact algorithm used
to find the optimal weights is Adam [?], which is a modification of Gradient
Descent that allows for adaptive learning rates for each weight individually,
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Algorithm 1 Gradient descent
1: Require: α : learning rate, a real number
2: Require: f(θ) : the function to be optimized
3: Require: θ0 : Initial parameter vector
4: t← 0
5: while θt not converged do
6: t← t+ 1
7: gt ← ∇θf(θt−1)
8: θt ← θt−1 − α · gt
9: return θt
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helping the network find better weights in a shorter time. The details of Adam
can be found in Algorithm 2.

Algorithm 2 Adam optimization algorithm. Good default settings are α =
0.001, β1 = 0.9, β2 = 0.999, ε = 10−8. All operations on vectors are element-
wise, and βt1, βt2 denote β1 and β2 to the power t.
1: Require: α : stepsize
2: Require: β1, β2 ∈ [0, 1) : Exponential decay rates for the moment estimates
3: Require: f(θ) : Function to be optimized
4: Require: θ0 : Initial parameter vector
5: m0 ← 0
6: v0 ← 0
7: t← 0
8: while θt not converged do
9: t← t+ 1
10: gt ← ∇θf(θt−1)
11: mt ← β1 ·mt−1 + (1− β1) · gt
12: vt ← β2 · vt−1 + (1− β2) · g2

t

13: m̂t ← mt\(1− βt1)
14: v̂t ← vt\(1− βt2)
15: θt ← θt−1 − α · m̂t\(

√
v̂t + ε)

16: return θt

2.2.3 Backpropagation

The remaining piece necessary to get a neural network-based machine learning
algorithm is a way to compute the gradients ∇θf(θ), where

f(θ) = 1
D̄

D̄∑
i=1
L(NNθ(xi), yi)

In conjunction with the Gradient Descent algorithm or its modification like
Adam, this would be enough to get an algorithm finding θ minimizing the loss
as defined above.

The way the gradient can be obtained is by using the layered structure of
neural networks and an algorithm called backpropagation [22]. The essence
of this approach is computing the gradient w.r.t. the output layer’s weights,
and using the derivative chain rule to iteratively get the gradient w.r.t. each
previous layer. The exact procedure is laid out in Appendix A.
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2.3 Recurrent Neural Networks

In applications that possess a temporal structure, it can be beneficial to use
models that have some sort of memory or internal state to allow for maintaining
information between consecutive timesteps. For this purpose, Recurrent Neural
Networks [13] have been introduced. The core idea here is that the network
makes uses of a hidden state ht ∈ Rnh that’s updated between each consecutive
timestep in the following way:

ht = g(Whhh
t−1 +Whxx

t +Bh)

where ht is the state and xt is the input at the t-th timestep. To properly
compute the gradients of the loss function, it is necessary to use a slightly
modified version of the backpropagation algorithm, called Backpropagation
Through Time [23], which takes into consideration the temporal structure and
ensures proper accumulation of gradients.

2.3.1 Long Short-Term Memory Networks

In practice, RNNs turn out to have difficulties in retaining long-term relations
across the timesteps, which prompted creating an enhanced version called the
Long Short-Term Memory Network, or LSTM [15] which deals with this issues
by introducing learnable gates in the state update rule. Specifically, an LSTM
cell is updated as follows:

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft � Ct−1 + it � C̃t
ot = σ(Wo · [ht−1, xt] + bo)

ht = ot � tanh(Ct)

where it is called the input gate, ft – forget gate, ct – cell state, ot – output
gate. A graphical representation of this computation can be seen in Figure 3.
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Figure 3: A visual depiction of the computation within an LSTM cell [24].

2.4 Relational Networks

In some applications, the network needs to process the positions of several
identical objects. By default, a regular MLP network has to learn this property
from experience, but with an appropriate architecture, this property can be
enforced in the network, making the training easier. This is the purpose of the
Relation Network (RN) [25], which in its original form was designed to enhance
image processing applications. It works by processing the representations of
each object pair independently, and then summing the outputs together – this
way, due to the commutative property of addition, indistinguishable objects
are processed in the same way and the output of the RN is invariant under the
operation of swapping them.

The original formulation of RN is as follows:

RN(O) = fφ

∑
i≤j

gθ(oi ⊕ oj)


where fφ and gθ are neural networks, O = {oi} are objects present in the input,
and the ⊕ operator is the direct sum, here equivalent to the concatenation of
its operands.

In this work, the Relation Network has been adapted to the specific situation
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of processing entities in a gridworld-based reinforcement learning environment.
Gridworlds are explained in more detail in Section 3.1.5. Firstly, the represen-
tation of each object is as follows:

oi = xi ⊕ yi ⊕ fi ⊕ eti

where (xi, yi) are the grid coordinates of the object oi normalized to the range
[0, 1), fi ∈ B is a flag whose meaning depends on the type of the object, for
example indicating whether an object is active or inactive, ti is the type of the
object, and et ∈ Rne is the embedding of the object type t. The embedding is
a trainable vector that allows the network to distinguish between objects of
different types, while treating all objects of the same type the same way.

What’s more, in RL applications, one object is the most important – the
agent itself. The other objects are relevant mostly in relation to it, while their
relations between each other are not as significant, which is why instead of
summing over all pairs of objects (quadratic in the number of objects), the
agent’s representation is always used as the first object in the direct sum, so
the final formulation of the relation network becomes

RN(O) = fφ

(∑
i

gθ(o0 ⊕ oi
)

(2)

where o0 is the agent’s own representation.
This architecture can be used as an input layer for other models. For

example, the output of the RN can be then used as the input to an LSTM cell,
for what is called RNLSTM later in this work.
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3 Reinforcement Learning

Reinforcement learning is the third of the aforementioned types of machine
learning in which the task is to find a certain policy mapping states of the
environment, to actions that can be taken by the agent. Unlike in supervised
learning, there are not labels that can be used as a direct objective. In fact, there
is not even a single specified dataset to learn from. Instead, the reinforcement
learning problem is defined by an environment and a reward which defines
the objective.

Figure 4: A schematic depiction of a reinforcement learning problem [26].

As depicted in Figure 4, the agent (which is the RL equivalent of a model)
takes actions in the environment and changes it in some way. Then it receives
the updated observation, as well as a reward signal.

3.1 Markov Decision Processes

A Markov Decision Process, or MDP, is a mathematical formalism common
for specifying RL problems. To be precise, an MDP is defined as a tuple
(S,A, T,R) where S is a set of states, A is a set of actions, T : S × A → ∆S
is the transition function determining the probabilities of states based on the
previous state and the action taken, and R : S → R is the reward function2

defining the objective to be optimized.
On the agent side, we have a policy π : S → ∆A whose purpose is choosing

the next action, possibly in a nondeterministic way. Together, they produce
trajectories obtained via the following process: start with an initial state s0,
choose an action a0 based on π(s0) (e.g. via sampling from the distribution3)

2Depending on the source, the reward function can be defined differently, e.g. as R : S ×
A→ R. Those definitions are equivalent and out of convenience, I’ll use the one present in
the main text

3In some cases, especially with deterministic policies, it might be beneficial to use a
different method for the sake of exploration.
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and observe the next state s1 sampled from the distribution T (s0, a0) and the
reward r0 = R(s1). The process is repeated until the end of the episode, yielding
a trajectory τ = 〈s0, a0, r0, s1, a1, r1, . . . , sn, an, rn〉 ∈ T . Through slight abuse
of notation, we can then define the total reward of a trajectory as R(τ) =

n∑
t=0

rt.
To solve an MDP is to find a policy π∗ which maximizes the expected total

reward when evaluated in the environment:

π∗ = arg max
π

E
τ∼π

R(τ)

where τ ∼ π denotes the process of sampling actions from the policy
described above.

It is important to denote that a policy π can also be interpreted as a
conditional probability function π(a|s) ∈ R. Both of these formalisms are
equivalent and are often used interchangeably in literature.

3.1.1 Partially Observable Markov Decision Processes

While POMDPs [27] are not used in this work, they are still worth mentioning
due to their prevalence in Reinforcement Learning. They reflect the idea of
imperfect information – instead of observing the real state st, the policy receives
an observation generated by a function O : S × A→ ∆Ω where Ω is the set of
possible observations. The observation in step t depends on the new state st
and the previous action at−1 which led to that state.

Formally, a POMDP is a tuple (S,A, T,R,Ω, O). It is a generalization of
regular MDPs, since each MDP can be converted into one by setting Ω = S

and O(s, a) = δs. It also turns out that each POMDP can be represented as
an MDP that combines the transition and observation mechanisms in its own
transition function.

Trajectories and total rewards in POMDPs work the same way as in MDPs,
with the only difference that the input to the policy is o ∼ O(s, a) rather than
s directly.

3.1.2 Decentralized POMDPs

A generalization of POMDPs that allows for multiple agents is called Dec-
POMDP [28]. It takes the approach of splitting the environment action into a
joint action taken by multiple agents, each of which receives its own observation.
Formally, a Dec-POMDP is a tuple (S, {Ai}, T, {Ri}, {Ωi}, O) where {Ai} is
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the set of actions that can be taken by the agent i, {Ωi} are that agent’s
possible observations and Ri and each agent’s reward functions. By considering
the joint actions A = ×iAi and joint observations Ω = ×iΩi this can be viewed
as a POMDP, however it places a limitation in the information shared between
agents.

3.1.3 Time horizon and discount factor

One component that I omitted from the definition of MDPs and their general-
izations is the discount factor γ. Its purpose is ensuring that even for infinite
horizon environments, the total reward of a trajectory remains finite as long as
the rewards themselves are bounded.

R(τ ; γ) =
∞∑
t=0

γtrt <∞ (3)

In this work, the considered environments maintain a finite horizon – so
while its value would still have some impact on the learned policies, it loses its
theoretical justification and is therefore set to γ = 1.

The intuition behind the discount factor is that it determines how much
attention is paid to the distant future, as compared to the near future. In the
case of γ = 1, sacrificing 0.1 reward in this step to receive 0.2 reward in the next
step is well worth it. Alternatively, with γ = 0.25, the respective discounted
rewards are 0.1 and 0.05, which makes the other decision to seem better.

For this reason, the discount factor can be seen in two ways – either as a
property of the MDP itself, or as an implementation detail of the algorithm
solving it. The result is largely the same, but the latter option gives more
flexibility in the possibility of adjusting the discount factor to generate different
behaviors. What’s more, in many environments of interest, there is no obvious
value for the discount factor, and it has to be chosen arbitrarily anyways, which
is why I chose to not include it in the definition of MDPs.

In practice, the discount factors used are often very close to 1, like 0.9 or
0.99. This allows for infinite-horizon problems to get the finite total reward
property, while not making the agent too myopic. In finite-horizon problems,
the discount rate is often equal to 1.
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3.1.4 Value function

An important concept defined for Markov Decision Processes is that of a value
function. Intuitively, it is meant to represent the expected reward that will
be collected starting from a certain state. However, there is not a unique way
of choosing the actions in the process of unrolling an episode, hence different
versions of a value function can be used depending on the context.

Given a certain policy π, we can take the approach of choosing the following
action from that policy, giving the value of a state s under the policy π [26]

V π(s) = Eπ{Rt|st = s} = Eπ
{ ∞∑
k=0

γkrt+k+1

∣∣∣∣∣st = s

}
(4)

If the policy π is the optimal policy π∗, we can also consider the optimal value
function V ∗(s) which is the “true" value of a state in the environment.

Furthermore, it’s often useful to consider the state-action value function
Qπ(s, a), where the process is similar: in the state s you take the action a, and
then proceed to act according to the policy π. These two views are equivalent
as long as we have access to the MDP transition dynamics:

V (s) = max
a

Q(s, a) (5)

Q(s, a) = E
s′∼T (s,a)

R(s, a) + γV (s′) (6)

Alternatively, the value function can be defined recursively using the Bellman
equation [29]. There, the value of a state is expressed as:

V π(s) = R(s, π(s)) + γ E
s′∼T (s,π(s))

V π(s′) (7)

And the value under the optimal policy is given by the Bellman optimality
equation:

V ∗(s) = max
a

R(s, a) + γ E
s′∼T (s,a)

V ∗(s′) (8)

3.1.5 Gridworlds

A gridworld is a useful type of an MDP that allows to abstract away real-world
mechanics to focus on a specific property of the environment being considered.
They are especially suitable for basic research, where the subject of investigation
is fundamental principles and mechanisms, rather than real-world efficiency,
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most notably in the area of AI Safety [30].
It has a certain width w and height h, and contains w× h grid cells aligned

in a rectangle. Each of those grid cells contains 0 or more objects from a set of
objects O, some of which may be agents. Each object has a position in grid
coordinates (x, y), as well as a type from a finite set of types T .

As an example, consider a labyrinth gridworld in which a single agent needs
to reach a goal, navigating through a maze of walls which together occupy W
grid cells. It would have the types T = {agent, goal, wall}, and the objects
O = {agent, goal, wall1, . . . , wallW}4

There are various ways of representing a gridworld. For the purposes of RL
agents, it is convenient for the representation to have the form of a real-valued
tensor. The most straight-forward way is by using the grid topology directly,
along with the binary encoding of each cell’s contents. In other words, the state
of a gridworld would be a tensor s ∈ Rw×h×Ō. This however leads to very large
and sparse state tensors and can be very inefficient. It also doesn’t generalize
to cases with a different number of objects.

A simple modification would involve using the objects’ types instead, causing
the state representation to stay in the constant space s ∈ Rw×h×T̄ as long as the
number of types remains constant. This relies on the assumption that objects
of the same type are indistinguishable, and that there can’t be two objects of
the same type in the same grid cell. In both of these cases, extra information
can be conveyed by concatenating it to the tensor in a way dependent on the
specific situation.

If the gridworld is relatively sparse, a dense state representation might be
more suitable. The basis here is concatenating the coordinates of objects in a
fixed order, with s = [x1, y1, x2, y2, . . . , xŌ, yŌ]ᵀ ∈ R2Ō. This representation
can be supplemented with extra information by injecting it after each (x,y)
coordinate pair, as long as the order remains consistent.

An alternative used in this work is using Relational Networks. Using the
notation from Section 2.4, we can set O = O with the representation of each
object as described there

oi = xi ⊕ yi ⊕ fi ⊕ ei

where the type embedding ei corresponds to one of the types in T .
4Using agent and goal in both the object and type sets is a slight abuse of notation – in

general the two sets can be completely different
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This method has many properties that make it especially suitable for general-
ization in the reinforcement learning setting. First of all, it explicitly introduces
a symmetry with respect to the operation of swapping objects of the same type,
which can significantly simplify the task of the learning algorithm. What’s
more, it allows for seamless generalization to different gridworld sizes, different
object counts, and even different type counts. A model trained with a certain
set of objects can be easily used in a different environment with more (or fewer)
objects, which wouldn’t be possible with a dense representation since its input
layer’s size would have to be adjusted. Due to the coordinate normalization, it
can also be used in a larger environment, which wouldn’t be possible with the
grid-based representation.

3.2 Policy Gradient

The main task of a Reinforcement Learning algorithm is to find a policy π(s)
which maximizes the expected return when evaluated in an environment. While
there are various methods of approaching this, the one used in this work is
based on the idea of policy gradients.

In a way, it is the most direct way of solving it in the spirit of machine
learning. The reward function can be seen as a function mapping policies to
real numbers (by evaluating them in the environment), and if that is then
differentiable with respect to the policy’s parameters, you can simply use
gradient ascent to find the optimal parameter set.

In other words, we’re treating RL as a standard optimization problem,5

where the goal is to maximize the following reward function:

J(θ) = Eτ∼πθR(τ) (9)

Assuming proper differentiability properties of the policy, this can be solved
via gradient ascent, which is the same thing as gradient descent (see: Section
2.2.1) with the update multiplied by −1, and therefore can also use the modified
approaches like the Adam algorithm.

Of course, this would require an expression for an estimate of the gradient
∇̂θJ(θ) in terms of the trajectory or its components (i.e. observations, actions

5Note that while we can to some extent treat it as such, it is a bit more complicated than
that since the data itself changes depending on the current policy weights, adding an extra
layer of complication over typical supervised learning.
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and rewards). It turns out that this is, in fact, possible to obtain analytically,
and the final policy gradient equation is as follows:

∇Eπ [R(τ)] = Eπ [R(τ)∇ log π(τ)] = Eπ
[(∑

t

R(st)
)
∇ log

(∏
t

π(at|st)
)]
(10)

The full derivation can be found in Appendix A. The main value of this
equation is in the fact that the gradient can be estimated from empirical data
using only the rewards and the probabilities of actions taken in the trajectory,
both of which can be sampled by simply rolling out the environment with a
differentiable policy.

An important observation is that due to the Markovian assumption, actions
taken at step t′ cannot affect rewards obtained in earlier steps t < t′. Since
adding a baseline value to the rewards does not change the expected value of
the policy gradient, this means that the total reward R(τ) = ∑

tR(st) can be
replaced with the reward-to-go R̂t = ∑

t′>t
R(s′t) without increasing the bias of

the estimation, but reducing its variance.
This is the basis of the REINFORCE algorithm [31] described in Algorithm 3.

Algorithm 3 REINFORCE, a basic Policy Gradient algorithm.
1: Require: θ0 : initial policy parameters
2: Require: α : learning rate
3: k ← 0
4: while θk not converged do
5: Collect a batch of trajectories {Dk} with the policy πθk
6: Compute rewards-to-go R̂t

7: Compute the policy gradient estimate as:

ĝk = 1
D̄k

∑
τ∈Dk

T∑
t=0
∇θ log πθ(at|st)|θkR̂t

8: Update the policy weights using gradient ascent or a related algorithm:

θk+1 = θk + αĝk

9: k ← k + 1
10: return θk

An important thing to keep in mind is that due to the fact that the sampling
is performed according to the current policy, a single batch of data can only be
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used for a single gradient update, making it an on-policy algorithm. What’s
more, this estimate tends to have a very high variance. Finally, since the
reward is summed across the entire episode, credit assignment becomes an issue
and the agents might have difficulties recognizing which actions led to good
outcomes, and which were associated with high returns by coincidence.

Due to these problems (sample inefficiency, high variance, credit assignment),
REINFORCE is rarely used in practice and is infeasible for most RL problems.
However, similarly to gradient descent, modified approaches have emerged,
designed to counteract those issues, one of which will be described now.

3.2.1 Proximal Policy Optimization

The PPO algorithm [32] attempts to fix the aforementioned issues by including
some changes to the algorithm that allow it to work more efficiently, even if it
is not quite as elegant theoretically.

First of all, to improve the credit assignment issue, it utilizes an actor-
critic approach, with a value prediction network used to estimate the expected
return of a certain state. This is formalized as the advantage estimated as
At = R̂t − V̂ (st) With this, it is possible to determine whether a certain action
was better than expected (At > 0) or worse (At < 0). The value network can
either be separate from the policy, or can share some of the weights to take
advantage of the multitask learning phenomenon.

Using a learned baseline (i.e. subtracting a constant value from the reward
function) also helps reduce the variance without introducing any bias – although
in the early stages of the training, the value estimation is completely random,
once it gets better, it can give a good estimation of the state’s value, making
the advantage more estimations reliable.

The largest difference, and the thing that makes PPO unique, lies in the
loss function it uses, the so called surrogate loss. To recap, a standard PG
loss that uses the advantage values can be expressed as the following:

L(s, a, θ) = Aπθ(s, a) log πθ(a|s) (11)

This, after differentiation, gives the same expression as the equation for the
policy gradient, so it can be used as a loss function for automatic differentiation
software.
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In PPO, however, the corresponding equation is more complicated:

L(s, a, θ, θk) = min
(
πθ(a|s)
πθk(a|s)

Aπθk (s, a), clip
(
πθ(a|s)
πθk(a|s)

, 1− ε, 1 + ε

)
Aπθk (s, a)

)
(12)

Starting with the difference in the signature of this function – the reason for
this is that in the PPO algorithm, each batch of data can be used for several
gradient updates. To counteract that the data becomes off-distribution after
the first update, an importance sampling term πθ(a|s)

πθk (a|s) has to be included, where
θk is the weights before performing any updates with the current batch.

The clip function discourages the policy from going too far from its original
values. A small modification to the weights can have a significant impact on
the policy, and combined with the fact that the loss function relies on data
generated by the “old" policy, this means the policy could easily stray too far
and experience a significant performance decrease, which might turn out not
to be recoverable.

Finally, the min operator between the clipped and unclipped expressions
(which are otherwise identical) means that we only really want to clip really
high values of the loss. If it is low, the gradient ascent algorithm shouldn’t
be moving in that direction anyways, so there’s no harm in having that part
unclipped.

3.2.2 Advantage estimation

An important improvement to the policy gradient algorithm is using the advan-
tage function as opposed to the raw rewards to optimize the policy. This idea,
stemming from actor-critic algorithms [33] gives the agent a better mechanism
for performing credit assignment.

The core idea is that if the agent is given an estimate of the current state’s
overall value, then it can compare the actual reward obtained through taking a
certain action to know if that action was better or worse than expected.

To this end, the network needs some way of estimating the state value,
which can be learned with another neural network, as described in the PPO
algorithm. With this, a common way of estimating the advantage values is by
using the Generalized Advantage Estimation (GAE) algorithm [34].

When thinking about advantage estimation, the question of how to actually
estimate the value of the state given a trajectory. In episodic tasks, it can be
viable to just rollout the entire episode and sum up the discounted rewards to
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go through Monte Carlo estimation:

V̂ (st) =
∑
t′≥t

γt
′−tRt′ (13)

On the other hand, you can also use the existing value estimate of the
next state with a Temporal Difference-based approach, which doesn’t require
observing the entire episode, and is better suited for continuing tasks:

V̂ (st) = Rt + γV̂ (st+1) (14)

Both of these approaches come with pros and cons. What’s more, various
intermediate methods are easy to define, by considering the next n rewards
and the (n+ 1)th value.

GAE introduces a way of interpolating between all of those by introducing
a special parameter λ ∈ [0, 1]. The GAE advantage estimate can then be
computed as

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδVt+l (15)

where δVt = R(t) + γV (st+1)− V (st) is the TD error at timestep t.
By adjusting the λ parameter, the algorithm can put more or less emphasis

on the value estimation. In the extreme cases, λ = 1 reduces to the Monte
Carlo estimate from Equation 13, and λ = 0 produces the TD estimate from
Equation 14.

3.2.3 Exploration - Exploitation trade-off

While training a Reinforcement Learning agent, there appears a dilemma
regarding how it should choose its actions. On one hand, its objective is to
optimize the total reward by exploiting its current knowledge. On the other
hand, it has an instrumental goal of obtaining more knowledge to be able to
fulfill the aforementioned task more effectively, which it can do by the way of
exploration, or taking actions that do not seem optimal at the moment.

The general rule is that in early stages of the training, agents should focus
on exploration to build up their knowledge, and then transition to exploitation
by taking the best action as the training goes on. In some cases, the RL
agent is deterministic, which means it doesn’t have a natural way of sampling
suboptimal actions. Then, a common strategy is called ε-greedy in which a
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value ε ∈ [0, 1] is set (and possibly varied throughout the training), and the
agent takes a random action with probability ε, and the optimal action with
probability 1− ε.

In case of stochastic algorithms, which include policy gradient-based ones,
the policy itself is a probability distribution over all possible actions, so the
actions can be directly sampled from it, and over the course of the training,
the randomness should decrease naturally, if it is beneficial in that particular
environment (there are, after all, examples in game theory where optimal
strategies are stochastic).

However, even for stochastic policy gradient algorithms, exploration can
be enhanced by adding an entropy bonus. Recall the formulation of the PG
training objective in Equation 9, extended by an additional term proportional
to the entropy of the policy S(θ):

J(θ) = Eτ∼πθR(τ) + λS(θ) (16)

where λ ∈ R is the entropy bonus coefficient, and S(θ) is the expected
entropy of the policy πθ. In practice, this can be computed from collected
experience by computing the average entropy of distributions πθ(s) ∈ ∆A
encountered in the collected trajectories.

3.3 Multiagent Reinforcement Learning

A generalization of Reinforcement Learning is Multiagent Reinforcement Learn-
ing (MARL) where it is possible for several agents to interact with the environ-
ment and, by extension, one another [35]. While it has clear applications in
real-life scenarios where agents have to interact with other agents, including
humans, it also carries many challenges.

The various MARL environments can be divided into three main categories,
for simplicity described on the example of two agents A1, A2:

• Cooperative – the reward of a state is equal for all agents Ri(s)

• Competitive – one agent’s gain is another’s loss, with R1(s) + R2(s) =
const, the equivalent of a constant-sum game in Game Theory

• Mixed – anything that doesn’t fit in the other two categories
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3.3.1 Non-stationarity and agent modeling

A standard assumption in RL algorithms stemming directly from the Markovian
assumption is that the environment is stationary, meaning that the transition
T (s, a) always yields the same distribution, or in other words, is an actual
function that remains the same throughout the training [10].

In a multiagent setting (Dec-POMDP) observed from the perspective of
a single agent, that is not quite the case. During the course of training, the
second agent’s policy changes, and because of that even if the action taken is
the same, the joint action will be different, yielding a different successor state
distribution.

One approach to dealing with this issue is the MultiAgent Deep Deterministic
Policy Gradient (MADDPG) algorithm [36] based on Deep Deterministic Policy
Gradient [37], an algorithm combining policy gradient and value-based methods.
Specifically, MADDPG uses a centralized critic shared between the agents to
facilitate implicit information exchange and coordination between the agents.

This work explores an alternative approach based on agent modeling. In
principle, given full information about the partner agent and including it in the
state representation, the problem becomes stationary again. However, since a
neural network-based agent can be arbitrarily large, I’m using an intermediate
step where the policy is conditioned on the information about the other agent’s
skill level – this will be explained in further detail in Section 4.

3.3.2 Self-play

An approach commonly used especially in competitive environments is self-play,
where the agents are copies of each other. It has been shown to achieve great
success for example in the game of Go with AlphaZero [6]. With self-play, the
agents can develop a natural training curriculum making it possible to learn
advanced and versatile strategies [38]. The core mechanism here is that if the
agent learns a new effective tactic, it can immediately start learning a way to
counter it.

This phenomenon, however, does not occur in cooperative environments
– there it is quite possible for the agent to overfit to only cooperating with
itself, making it incapable of cooperating with other, arbitrary agents. To
some extent, this can be mitigated by including old versions of the agent in the
training, which is the approach taken in this work, explained in more detail in
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Section 4.3.

3.3.3 Ad-Hoc Cooperation

In a standard ML context, it is quite simple to define generalization – the
model should learn to perform well on data it hasn’t seen before, but that
comes from the same distribution as the training data. It is not as simple
in the case of MARL, where there are different types of generalization to be
considered. Grover et al. [39] introduce a valuable classification in the context
of policy representation learning which has an “external" observer, but similar
types can be applied to agents observing themselves along with their partners
or opponents.

One axis to consider is generalization across tasks, which is relevant also
in single-agent RL. Given a family of MDPs, we want an agent trained on its
subset to perform well on all of them, including ones it hasn’t seen yet. In
many cases, this is included in the environment design by randomizing the
starting positions of various objects, like the agent or a goal it has to reach.

Then, specifically for MARL, there is the issue of generalization across
agents. Often it is desirable to have an agent capable of performing well with a
wide range of partner agents. So on one hand there is weak generalization
which refers to cooperation between agents which appeared throughout the
training but not with each other. Strong generalization, in turn, corresponds
to acting with a partner that has never been encountered in the training by
the agent.

Finally, this work focuses on a slightly different direction of skill general-
ization – a robust agent should be able to adapt to partners performing either
well, or poorly, coordinating with them or assisting in doing the tasks they are
not doing due to the lower skill level. Standard iterative RL approaches can
easily provide an excellent testbed for this, since early versions of the agents
are usually randomly initialized and can be seen as unskilled, later versions are
skilled, and there’s a wide range of intermediate states.

3.4 Meta-learning and mesa-optimization

Meta-learning is a concept tightly connected to generalization, most commonly
used in the context of the aforementioned task generalization. While standard
learning algorithms (whether Machine Learning or specifically Reinforcement
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Learning) learn to effectively perform a certain task, possibly generalizing across
some parameters of the task, the goal of meta-learning is learning to learn to
solve different tasks, using different, albeit in some way related, environments.

Meta-learning was introduced by Jurgen Schmidhuber in his Master’s thesis
[40], and the work that was particularly inspiring here was the Model-Agnostic
Meta-Learning framework [18]. It uses a general algorithm involving a double
training loop – one across different tasks, and another one across the timesteps
of the task. It requires computing second order derivatives (Hessian matrices)
of the loss function, although that can become computationally intractable
with large networks, so a first-order approximation was also shown to perform
well.

A related idea is that of mesa-optimization [41] which is considered
primarily in the context of AI safety and value alignment. It comes into play
whenever an outer optimizer (meta-optimizer) is used to create an agent acting
as the inner optimizer (mesa-optimizer). Using meta-learning algorithms carries
the risk of value misalignment, where the two optimizers’ rewards differ from
one another.

In the context of multiagent RL, a natural form of meta-learning is gen-
eralizing across various partner agent – by training with some of the possible
partners, it is desirable for the agent to learn to adapt to a new one efficiently.
Whenever it uses a recurrent policy (e.g. an LSTM network), the agent’s inner
state updates to reflect its knowledge about the partner agent can also play the
role of a mesa-optimizer, making this issue relevant even with an unchanging
environment.

3.5 Theory of Mind

Theory of Mind [3] is a concept stemming from Cognitive Sciences, describing
how humans (and other animals) build an inner belief state regarding others’
belief states. In human children, for example, theory of mind capabilities have
been shown to develop between the ages of 3 and 5 [42] which constitutes an
important step in their ability to function in a society alongside other people.

A common way of recognizing whether a system (e.g. a child, an animal, or
a computer program) is capable of modeling others is the so called Sally-Anne
Experiment. [43] It involves two children (or, in general, agents): Sally and
Anne, as well as an external observer whose capabilities we’re evaluating. The
experiment proceeds as follows:
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1. Sally and Anne are in a room with a basket and a box, Sally has a marble

2. Sally puts the marble in the basket

3. Sally leaves the room

4. Anne removes the marble from the basket and places it in a box next to
the basket

5. Sally returns to the room

A cartoon used to depict the experiment in the original paper can be seen
in Figure 5.

Now, the question to the observer is: where will Sally look for the marble?
The correct answer, obviously, is the basket – this is the last place where she
saw it, and there’s no way for her to know that it is been moved. However, a
naive system incapable of reasoning about Sally’s beliefs would point to the
box instead, as that’s where the marble is actually located, it overwrites Sally’s
belief with its own beliefs.

Since it is important for humans, it can also be expected to be a useful ability
for artificial agents to possess in order to cooperate with other heterogeneous
agents in a shared environment, which is bound to be necessary in case of
wide-spread RL agents in public life.

Rabinowitz et al. [4] have shown that this is, in fact, possible for data-driven
systems in their Machine Theory of Mind algorithm which observes agents
acting in an environments and predicts their beliefs and intents.

A more applied approach has been taken by Foerster et al. [44] in the
Bayesian Action Decoder, followed up by the Simplified Action Decoder [45].
There, using explicitly updated predictions of the other agents’ belief states
has shown a significant improvement in their abilities to cooperate in the game
of Hanabi [1].
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Figure 5: The original cartoon describing the Sally-Anne test [43].
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4 Experiments

This section will detail the experimental procedure used to test the skill modeling
approach, including the specific models used, as well as the environments in
which they were trained.

4.1 Environment

The environments used to evaluate this approach are variations of the base
foraging environment, inspired by the Traveling Salesman Problem. They were
designed as to accentuate the properties of cooperation between agents, and in
some cases, making them explicit to enable directly measuring the cooperation
skill.

The environment is a fully observable, fully cooperative (meaning that the
reward is shared by both agents), deterministic, decentralized MDP on a 7× 7
gridworld with two agents, NS subgoals and one final goal. Using the notation
from Section 3.1.5, that means we have the object and type sets as follows:

O = {Agent1, Agent2, Subgoal1, . . . , SubgoalNS , Goal}

T = {Agent1, Agent2, Subgoal, Goal}

In each timestep, both agents can take one of five actions:

Ai = {north, south, west, east, stay}

Each of them moves the agent in the respective direction by one grid cell (or
makes it stay in place, for the stay action).

Informally speaking, the agents’ goal is to collect each of the subgoals by
stepping on them, and then reaching the final goal. More precisely, the first
time one of the agents steps on a subgoal, they both receive a fixed reward
and the subgoal is marked as collected. After all subgoals have been collected,
stepping on the final goal (by at least one of the agents) also gives a positive
reward and ends the episode. To encourage finishing the episodes quickly, the
environment also gives a small negative reward at each timestep. A visual
representation of the environment can be seen in Figure 6a.



30

(a) Base environment (b) Two goals environment

Figure 6: A visualization of the environment in the a) base and b) two goal
variants. The meaning of icons is as follows: robot – first agent, human – second
agent (whose skill level determines the reward), gold key – uncollected subgoal,
empty key – collected subgoal, diamond with gold – the sole final goal, or the
goal giving a larger reward with a skilled partner goal, diamond – goal giving a
larger reward with a novice partner. The shading of the goals indicates whether
they are active, i.e. whether all subgoals have been collected.

4.1.1 Two goals variant

This version was designed as a simplified case in which the task of estimating the
other agent’s identity is made more explicit. Agents are trained and evaluated
in two configurations only: either a trained agent with a copy of itself, called
the expert or skilled partner, or with a randomly initialized novice agent. There
are two distinguishable final goals G1, G2 that give different rewards R1, R2

upon collection, but collecting either of them results in terminating the episode.
This means that the sets O and T now each contain an additional element
corresponding to the second final goal and its type.

If the second agent is a trained agent, we have R1 > R2, and conversely, if
the second agent is a novice, R2 > R1. This way, the first agent is encouraged
to build up an internal model if its partner’s skill level, to choose the final goal
appropriately. A depiction of this environment can be seen in Figure 6b.

Although this environment loses some of the nice theoretical properties by
entangling the reward function with the identity of one of the agents (therefore
de facto ceasing to use the Dec-MDP formalism), it serves well as a stepping
stone towards the full system. So while the multiagent cooperation aspect is
not as emphasised, there is a clear focus on agent modelling, allowing to see
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whether the approach used in this work can fulfill that goal.

4.1.2 Final action variant

Here, the guiding principle is putting an explicit emphasis on the cooperation
mechanism between the agents, by incorporating a second phase inspired by
the game-theoretic concept of coordination using a fully cooperative Assurance
Game [46].

In this game, whose payoff matrix can be seen in Table 1, each player A0

and A1 has two available actions: cooperation C and non-cooperation N . Both
(C,C) and (N,N) are Nash Equilibria, however only one of them is Pareto-
optimal. What’s more, to realistically model the scenario of cooperating with
partners of various skill levels, unskilled agents are more likely to not cooperate
(N) rather than cooperate (C).

A0

C N

A1
C 1, 1 0, 0
N 0, 0 0.3, 0.3

Table 1: Payoff matrix of the Assurance Game

To make it consistent with the rest of the environment, the action C is
represented by the action corresponding to movement north in the gridworld,
and the action N is represented by any other action. This way, a randomly
initialized agent has a 20% chance of cooperating.

Staying in the simplified realm of only two types of agents (expert and
novice) and assuming perfect information about the other agent’s identity, the
optimal behavior in the Assurance Game when acting with a skilled partner is,
naturally, the Pareto-optimal joint action (C,C) with the expected reward of 1.
With a novice partner, the optimal action can be found by finding the expected
utility as a function of the probability of cooperating (to consider both pure
and mixed strategies):

U(p) = 0.2 p+ 0.8 · 0.3 (1− p) = −0.04 p+ 0.24

p∗ := arg max
p

U(p) = 0 (17)

U(p∗) = 0.24
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In other words, the optimal action with a partner whose probability of cooper-
ating is 20% is deterministically not cooperating. This way, the joint action
will be (N,N) 80% of the time, and (N,C) 20% of the time.

The way it is implemented in the environment is that now the game has
two phases. In the first phase, the agents have to collect subgoals and head
to the final goal as usual. After that, however, instead of ending the episode,
the agents have to choose a single action in the Assurance Game. This way,
they can use the first phase to make a judgement about the other’s skill level,
and then use that information to choose the correct strategy, extending the
two goal variant with an actual coordination mechanism.

4.2 Models

In order to solve those environments, I tested three types of models, each with
a different way of utilising Theory of Mind parameters (here: the skill level)
visualized in Figure 7.

The first model is the baseline that doesn’t involve any explicit skill modelling
components. It consists of a relation layer (see Section 2.4) to serve as the
input state embedding, followed by a recurrent LSTM layer, and the heads for
policy and value predictions.

The second model is the main variant investigated in this work, the Skill
Modelling (SM) network. While the model itself doesn’t receive any extra
inputs when choosing actions, it receives an extra reward signal, making it
perfect for the centralized training - decentralized execution (CTDE) approach.
An intermediate layer is trained to output its partner’s skill level, which is
also fed through a bottleneck layer and concatenated with the relation layer’s
output, going into the main policy LSTM.

Finally, the last model is the Ground Truth (GT) model which serves as
an estimate of the best performance attainable by any skill modeling agent.
Since the skill modeling capabilities of the SM model are isolated from the rest
of the network via the bottleneck, the best it can do is output the labels that
it is trained to predict, so feeding that value directly into the policy network
provides an upper bound of its performance.
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Figure 7: A schematic of the models used for the policy and value functions.
(left) Baseline model where no explicit skill level information is used

(middle) Skill Modelling (SM) model where there’s a component trained to
predict the skill level

(right) Ground Truth (GT) model where the skill level is directly passed as an
input to the network

4.2.1 Stateless models

Some experiments were also performed on a less powerful, stateless model
architecture, with analogous variants as described above (i.e. baseline, SM and
GT; note that the SM model is then no longer stateless, but its memory is
restricted to modeling the other agent’s skill level).

The capabilities of such a model are significantly limited, given that the
only information it receives is the snapshot of the current state, so any inference
of the partner’s skill level cannot take into consideration the episode’s history.

4.2.2 Separate skill prediction

Another briefly explored concept is that of a separate skill predictor. This
method approaches the problem from the perspective of a purely supervised
task – given a population of agents, train a model to predict their skill levels
given a sequence of observations gathered throughout the episode. If sufficient
performance is reached, the model’s output can then in principle serve as an
input into a GT agent, ridding it of its dependency on external knowledge for
the policy function.
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4.3 Training methods

The policy optimization process is based on the idea of self-play, where the
agent is partnered either with a copy or an old version of itself. The general
training procedure is described in Algorithm 4:

Algorithm 4 The general training procedure
1: Require: T : number of iterations
2: Require: Ss : number of steps to collect with a copy
3: Require: No : number of partner agents to sample
4: Require: So : number of steps to collect with each sampled partner
5: for t ∈ [0, T ] do
6: Collect a batch Bs containing at least Ns steps with agents (At, At)
7: for i ∈ [0, No] do
8: Sample a past agent An ∈ {A0, . . . , At}
9: Collect a batch Bi

o with at least No steps with agents (At, An)
10: Concatenate batches {Bi

o}i into Bo

11: Concatenate batches Bs and Bo into Bt

12: Update the agent At using the data batch Bt

13: return At

Collecting a batch of at least N steps works in the way that episodes are
rolled out until N steps are collected, and then the last episode is allowed to
finish, usually resulting in slightly more than N steps. This is not a problem
as the batch size doesn’t need to be constant, but allows for computing all
advantages and rewards-to-go using Monte Carlo estimation.

Specifically, three methods of partner sampling were considered:

• Binary

• Iteration-based

• Skill-based

In the binary method, it is not so much sampling as it is deterministic
partner selection. Each sampled agent is the first, randomly initialized agent
A0. This is a relatively simple setting where the skill level can be represented
as a binary value 0 or 1. It is also the only possible method for the Two Goals
environment, since its reward structure depends on the partner agent’s identity
and is inherently binary.

Iteration-based sampling is the naive way of choosing from the entire range
of agents (as opposed to just the first one, as in the binary version). In each
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iteration t, you uniformly sample an iteration n ∈ [0, t] and choose its associated
agent An. While reasonable at first glance, this approach has a serious flaw
when we consider the way that skill level usually progresses during the training
- importantly, that at some point the training curve flattens out as the agents
converge. This means that the skill level of sampled agents will over time lean
more and more heavily towards higher values, defeating the original purpose of
sampling, which is having the agent experience a wide range of partner agents.

Skill-based sampling is a way of alleviating that issue by drawing inspiration
from the inverse transform sampling. Instead of sampling an iteration directly,
a skill level is sampled. The details of skill representation will be laid out in
the next section, but what’s important is that the skill level is represented as a
numberR ∈ R, and that we have access to the skill levels of all past agents {Rt}t.
Therefore, a skill value R̃ is sampled from the range [min {Rt},max {Rt}], and
then an agent An is chosen in a way that minimizes |Rn − R̃|. This way, a
consistent representation of various skill levels is ensured, in return causing
newer near-converged agents to be sampled very rarely.

4.4 Skill representation

An important thing to consider is what is actually meant by “skill level" of an
agent. Intuitively, it should correspond to the expected episode return obtained
by the agent, but the complication is that since the environment is inherently
multiagent, you need two agents to actually roll out an episode.

In case of the binary sampling method, this issue is solved easily by assigning
the skill level value 0 to the randomly initialized agent and 1 to its newest version.
The interpretation of those values differs at each iteration, as 1 corresponds
to iteration 10 at t = 10, and 100 at t = 100, but in the later stages of the
training, when the policy starts to converge and stabilize, this should not be a
significant problem.

When sampling from the entire range of past agents, it becomes necessary
to represent the skill level with better granularity. There are two issues to
consider here. First of all, sometimes the agents need to cooperate with an
agent of a skill level higher than their own. This means that the skill level input
would be larger than anything they’ve experienced throughout the training,
which could have an unpredictable impact on their policy.

The second issue is a bit more subtle - when collecting a batch of data, two
copies of the most recent agent are put in the environment together. For a
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GT model to work in such a setting, it needs to receive a measure of the skill
level when choosing the actions, but it cannot know the skill level value before
rolling out some episodes and measuring their returns. This leads to a “chicken
and egg” situation where it is impossible for an agent to know its own skill
level.

To mitigate this issue, a normalization procedure is used, derived as an
extension of the binary skill level labels. Given a history of skill levels {Rt}t,
at iteration t0, the agent’s own skill level is set to be equal to 1, and the skill
level of a sampled agent is normalized linearly so that mint{Rt} maps to 0 and
maxt{Rt} maps to 1. This way, the skill level value observed by any agent is
bounded in [0, 1]. Those same values can also be used for SM agents as the
value their skill modeling components are trying to predict.

4.5 Joint-optimal planning

In order to estimate the duration (and, by extension, the reward) of the optimal
strategy in an environment, I used a planner to search for the best joint strategy
assuming perfect cooperation and coordination between the agents. Since the
core of the task is similar to the multiagent Traveling Salesman Problem which
is known to be NP-complete [47], the possibilities of developing an efficient
algorithm are limited. However, the number of subgoals considered in the
experiments is generally quite low, up to 4, which makes it viable to be solved
using a brute-force approach.

To make the problem tractable, I simplified the state space so that each
environment is represented by a weighted complete graph in which the nodes
are positions of subgoals, goals and the starting positions of agents, and edges
represent the distances in the gridworld. Agent actions are then interpreted as
going from one position to another, e.g. from a subgoal to a final goal.

In the base environment case, to finish an episode, each subgoal has to be
visited, and afterwards the goal. From this a few observations can be made:

• There’s no need to visit a subgoal twice

• There’s no need to do anything after visiting the final goal

• Each goal has to be visited by at least one agent, and there’s no need for
another agent to visit it as well

• The last action for one of the agent needs to be going to the final goal
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Starting with a set of strategies encompassing all possible permutations of
visiting the subgoals for both agents (for a total of (n!)2 joint strategies where n
is the number of subgoals), I applied the aforementioned constraints removing
all redundant strategies, reducing the size of the search space to (n+ 1)!. Since
(4 + 1)! = 120, it is sufficiently fast to just evaluate each of those joint strategies
and choose the one which results in the episode finishing the soonest.

As previously mentioned, this assumes perfect coordination, which might
not be possible in reality, however it provides an upper bound on agents’
performance in an environment with specific object locations. Through a Monte
Carlo simulation it is also possible to estimate the optimal mean reward across
all possible environments, which yields an approximate upper bound on the
performance when averaged across many sampled instances.
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4.6 Implementation

In order to ensure proper flexibility and reusability, the code was structured in
a way that separated out the different parts of the RL logic, in order to obtain
a set of abstractions which can be combined together in any variations. This
section will provide an overview of the implementation of the program, as well
as the abstractions and how they fit together to create the full training and
evaluation pipeline.

4.6.1 Tools

The primary tool used for this project was the Python [48] programming
language, specifically Python 3.7. Python is a general purpose language,
supporting both object-oriented and functional programming paradigms. Even
though it is relatively slow, its simplicity and the fact that it can use libraries
written in other, faster languages to handle heavier computations, caused it to
become the de facto standard in machine learning applications.

Within Python, the two main frameworks I used for efficient computation
were SciPy (with a particular focus on NumPy) [49] and PyTorch [50]. The first
was used for general purpose data manipulation using its ndarray data structure,
while the latter was used specifically for the deep learning parts: building the
neural networks, computing the gradients and updating the weights.

For visualization purposes, I used TensorBoard [51] for tracking the training
progress in real time, and Matplotlib [52] supported by Seaborn for all other
plots and evaluations after the training.

In order to build the experimental environments, I used the Pycolab library
[53]. It provides a set of components useful in building gridworld-based MDPs
that can be used for RL research. The environments were built adhering to
the interface introduced by OpenAI Gym [54] standardizing the methods an
environment should implement for easy use with RL algorithm.

4.6.2 Abstractions

Since the code was structured in a mostly object-oriented way, each of the
following abstractions was implemented as a class, possibly holding some of
the other abstractions as fields or inheriting from them.

Firstly, there’s the BaseModel abstract class inheriting from the PyTorch
Module class, which is later used to create specific models (e.g. MLPModel or
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RelationModel). Its main feature is the model.forward(...) method which takes
the following arguments: the network input, optionally the previous hidden
state (for recurrent models), and optionally skill-related information. It has
three outputs: an action distribution, the next hidden state, and a dictionary
with extra outputs like the value or skill estimation. This interface is common
for all models, even though some, e.g. a simple MLP model, ignore the optional
inputs and return trivial skill estimates.

The next important abstraction is an Agent which is responsible for connect-
ing a BaseModel object with a Gym-like environment by providing methods
like agent.compute_single_action(...) for choosing an action to take, and
agent.evaluate_actions (...) to compute quantities necessary for gradient-based
optimization.

To actually use these agents, I created a Collector class holding two Agent
instances and the environment in question. Its main role is providing the
collector .collect_data (...) method rolling out a certain number of steps or
episodes in the environment, with the chosen agents.

To actually update an agent, data collected in a Collector is used in a
PPOptimizer object which holds an Adam optimizer and provides the ppo.train_on_data(...)
method, using said optimizer to modify the agents’ weights.

Finally, all of this is combined in a Trainer object that takes care of the
general training logic: it holds the agents, the environment, a collector and
an optimizer, and provides the method trainer . train (...) which iterates a
specified number of time, collecting a batch of data and using it to update the
agents.

4.6.3 Interactive mode

To simplify experimenting and evaluating various agents, I developed a web
app using Flask and TypeScript as a front-end for the environment – the user
can run a local web server with a specified environment and model to be used
as one of the agents, and then control the other agent with their keyboard. A
picture of the interface can be seen in Figure 8.
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Figure 8: The interactive mode interface. Its main features include: the current
environment state visualization (top left), a printout of the currently loaded
model (top right), a possibility to reset the environment to a specific state
(bottom left), the current action probabilities of the RL agent along with its
skill level estimate (bottom) and the option to give the agent a specific skill level
estimate value (bottom right). The human agent is controlled with direction
keys by the user, while the robot agent is controlled by the trained RL model.
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5 Results

This section will describe the experimental results obtained during the course
of the project. The core metrics for each experiment are the mean episode
length and mean total episode reward. While correlated, the episode length
provides a measure independent of the reward structure, allowing for reward
shaping to improve the training performance.

It will begin with the two goal experiment, as it was designed to be the
simplest one serving as a test of the basic principles. Then, progressively more
difficult, the final action experiment and base TSP environment results are
described.

5.1 Two goals environment

In this setting, I have trained recurrent models in standard, GT and SM
modes with binary partner choice and skill representation. As can be seen in
Figure 9, all models manage to achieve a decent performance, with the GT
model achieving the highest final mean reward, followed by SM and then the
baseline model.

A similar picture can be seen in the graph of correct goal collection ratio,
defined as the number of episodes with a correctly chosen final goal (according
to the partner agent) divided by the total number of episodes taking place in
that iteration.

An important thing to keep in mind is that the way a single training batch
is collected, every batch will contain an approximately constant number of
environment steps. Since in later stages of the training, a single episode with
an expert partner is likely to be shorter than an episode with a novice partners,
this skews the per-episode metrics in the direction of expert values.

To counteract this effect, Table 2 shows the final results separated by the
partner agent type, which show the advantage of GT and SM models in both
pairings. The effect is the most visible in the correct goal ratio, which was
designed explicitly to require modeling of the partner agent. In the GT variant,
the ratio is noticeably lower with a novice partner than with an expert partner,
which happens due to the partner agent also sometimes stepping on a final goal
while taking random actions, which is impossible for the main agent to prevent.

The skill modeling approach shows moderate improvements in all metrics,
particularly the correct goal ratio, which shows that this method can indeed
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be used to encourage explicit modeling of other agents.
The approximate optimal values in this table are computed using the

planning algorithm described in Section 4.5. With an expert partner, the value
is directly taken from the results of a simulation with two agents. However,
with a novice partner, it’s not obvious how exactly to include its randomness,
so the choice taken here was to model it as an immobile agent, and the optimal
values in the table are the results of a simulation with only a single agent in the
environment. This means the values are biased, but the effect is small enough
that the planner still provides valuable insights regarding the best possible
performance.

Partner type Mean episode
reward

Mean episode
length

Correct goal
ratio

Baseline Novice 0.80 ± 0.004 15.25 ± 0.18 0.88 ± 0.010
Expert 0.86 ± 0.004 9.92 ± 0.13 0.89 ± 0.009

Skill Modeling Novice 0.82 ± 0.004 13.37 ± 0.15 0.88 ± 0.010
Expert 0.88 ± 0.003 9.82 ± 0.13 0.94 ± 0.007

Ground Truth Novice 0.84 ± 0.003 13.04 ± 0.16 0.93 ± 0.008
Expert 0.90 ± 0.002 9.38 ± 0.12 0.99 ± 0.004

Optimal Novice 0.88 12.52 1
Expert 0.94 6.14 1

Table 2: Evaluation of fully trained agents in the two goal setting with two
subgoals computed on a sample of 1000 episodes. Confidence intervals for
reward and length values correspond to the standard error of the mean, and for
the correct goal ratio, it is the 95% Wald confidence interval of the binomial
distribution.

5.1.1 Emergent cooperative behavior

An interesting phenomenon could be observed when a memoryless (i.e. the
LSTM was replaced with an identity layer) agent was used instead of the typical
stateful one in the two goals experiment, with binary sampling method. As can
be seen in Figure 10, the correct goal selection ratio approaches relatively high
values, even without GT information, reaching even 80% accuracy. At first
this seems like it shouldn’t be possible – after all, the agents do not have any
memory, so they shouldn’t be able to create any internal skill representation of
their partners.

A hint as to what’s happening can be found in Figure 10b which shows
how the mean episode length changes throughout the training. While at the
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(a) Mean episode reward

(b) Mean episode length

(c) Correct goal ratio

Figure 9: Training curves of the baseline (blue), SM (green) and GT (pink)
models throughout the training in the two goal environment.

beginning it is steadily decreasing, there’s a clear increase towards the end when
the correct goal ratio in Figure 10c also increases. This suggests that through
taking some extra steps, the agents manage to develop a way to coordinate
so that the obtained reward becomes higher (Figure 10a) through the higher
probability of choosing the correct final goal.

While interpreting the decisions of a neural network-based agents is not easy,
this hypothesis is readily confirmed by investigating visualizations of episode
rollouts, and interacting with a trained agent in the interactive mode. It turns
out that if two fully trained versions of the model are interacting with each
other, they will move in a very close distance to each other, often occupying
the same grid cell, and will walk towards the correct goal together. However, if
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the agents are far away from one another, they will instead proceed to the goal
corresponding to the novice partner.

In the interactive mode, it is possible to investigate this phenomenon and
make the other agent switch between heading towards either goal by repeatedly
increasing and decreasing the distance between agents.

(a) Mean episode reward

(b) Mean episode length

(c) Correct goal ratio

Figure 10: Training curves of the stateless baseline (orange) and GT (blue)
models throughout the training in the two goal environment, showing the
emergent memoryless cooperation capabilities of the agents.
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5.2 Final Action Environment

In this environment, there is a natural measure of cooperation in the Assurance
Game mechanism which is the ratio of episodes ended with each joint action.
When evaluated separately with an expert and novice partner, the optimal
expected behavior is cooperating with an expert producing only (C,C) joint
actions, and not cooperating with a novice producing a mixture of 80% (N,N)
and 20% (N,C). The uncertainty here is unavoidable since the novice agent
behaves randomly and sometimes will cooperate as if by accident.

A good way of visually depicting this measure is by using a frequency matrix
of joint actions. This can be seen in Figure 11, including the theoretical optimum
and real experimental results of different models in a binary setting, where only
the fully trained agent and the randomly initialized one are considered.

The most important values for comparing different models are the diagonal
values: (C,C) for expert partners, and (N,N) for novice partners, as those are
the respective optimal choices for expert agents. While all models perform fairly
well with expert partners, the baseline agent is noticeably underperforming when
partnered with a novice partner. Skill Modeling agents attain a performance
close to the Ground Truth agents despite receiving no extra information in the
evaluation phase, which shows the strength of this approach.

Due to the inherent stochasticity of the models, even expert agents with
expert partners and perfect information about their identity, sometimes make
mistakes. The largest difference between the models is in the (C, N) frequency
of the baseline model. It means that it relatively often tries to cooperate
with a novice partner, as if due to incorrectly predicting its skill level. The
corresponding values for GT and SM models are significantly lower.
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(a) Optimal agent with ideal information

(b) Baseline agent

(c) Skill Modeling agent

(d) Ground Truth agent

Figure 11: Frequency matrices of each joint action with different model archi-
tectures in the final action experiment and for the optimal agent. The partner
agent corresponds to the column player of the matrix.
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5.2.1 Continuous skill level

For more robust results, another evaluation was performed – instead of only
using the binary skill levels, the continuous values normalized to the range [0, 1]
as described in Section 4.4. For easier interpretability of the results, the final
agent was evaluated with a set of agents at chosen iteration numbers (0, 20,
50, 200, 499) from an independently trained population, with the values set
to represent the entire range of possible skill levels. A visualization of those
results in the form of final action frequency matrices can be seen in Figure 12.

The improvement in this case is not quite as apparent as in the binary skill
representation. The Ground Truth model still achieves the best performance,
especially with very unskilled and very skilled partners. The performance of the
Skill Modeling agent is in some cases higher than the baseline, and sometimes
lower, making it impossible to draw clear conclusions.

It is also apparent that the most difficult part of this task is, in fact,
cooperating with intermediate agents since for each model, those have the
highest off-diagonal values in the frequency matrices. In a way, those are the
least predictable – early agents can be reliably expected to uniformly sample
their actions, and advanced agents can generally be trusted to behave optimally,
but there are not any such guarantees for intermediate ones.
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(a) Baseline agent

(b) Skill Modeling agent

(c) Ground Truth agent

Figure 12: Frequency matrices of each joint action with different model archi-
tectures in the final action experiment in the continuous skill representation
case. The main agent is fully trained and corresponds to the row player of
the matrix, while the partner agent is taken from the denoted iteration and
corresponds to the column player.
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5.3 Base TSP environment

In this setting, there is no explicit metric that focuses specifically on the
cooperation. However, since the ability to effectively cooperate should improve
the agents’ overall performance, the standard metrics of mean episode length
and total reward can be used for the comparison. Those quantities, plotted
against training iterations, can be seen in Figure 13.

(a) Mean episode reward

(b) Mean episode length

Figure 13: Training curves of the baseline (light blue), SM (red) and GT
(dark blue) models throughout the training in the base environment with two
subgoals.

The three lines overlap almost entirely, showing that neither Ground Truth
nor Skill Modeling approaches bring any major improvements. This is somewhat
surprising, as the underlying assumption is that the ground truth information
should be useful for the agent’s decision-making, suggesting that this environ-
ment might not be the best choice for this specific phenomenon. It is also
possible that a more extensive hyperparameter search, together with larger
neural networks, would yield better results, but this is left for future work.

More detailed insights can be obtained by evaluating the agent with a
specific type of partner (i.e. expert or novice), and investigating the episode
lengths and total returns in both cases. This can be seen in Table 3. Even then,
the results are quite close for all the models, which indicates that the extra



50

Partner type Mean episode
return

Mean episode
length

Simple Novice 0.470 ± 0.001 12.96 ± 0.139
Expert 0.506 ± 0.001 9.37 ± 0.109

Skill Modeling Novice 0.469 ± 0.001 13.09 ± 0.143
Expert 0.511 ± 0.001 8.90 ± 0.098

Ground Truth Novice 0.471 ± 0.002 12.90 ± 0.155
Expert 0.508 ± 0.001 9.20 ± 0.108

Optimal Novice 0.475 12.45
Expert 0.538 6.13

Table 3: Evaluation of fully trained agents in the base setting. Confidence
intervals for reward and length values correspond to the standard error of the
mean. The optimal values were obtained using the planning algorithm, with
Novice values computed under the assumption that the partner doesn’t collect
any subgoals.

information is not really being used by the agents, or that it doesn’t actually
bring any significant benefit.

In analyzing this behavior, it can be observed that the agent’s performances
with a novice partner are generally fairly close to the optimum, but are not
that great when matched up with an expert partner. To some extent, this can
be explained by the fact that it can be extremely risky to assume a partner
is skilled. In an extreme case, it could lead the main agent to wait near the
final goal, hoping their partner would gather the remaining subgoals, to no
avail. On the other hand, the penalty for not cooperating with a skilled partner
is not that large, causing this to be a “safe" option that hinders the overall
performance.
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5.4 Efficiency impact of the Relational Network

An interesting thing to explore is the effect of the Relational Network-based
embedding of the input observation, as opposed to a regular dense representation
which is then processed by an MLP, in the standard TSP environment. Since
the advantage of RNs comes into play when there’s multiple objects of the
same type, the basis of the comparison is changing the number of subgoals in
the environment and analysing the dynamics of the training process.

(a) Mean episode length with an MLP model

(b) Mean episode length with an RN model

Figure 14: Training curves of MLP and RN models, with a varying number of
subgoals.

In Figure 14 you can see the results of training a model with and without
Relational layers, with the number of subgoals ranging from 1 to 4. As expected,
RN models scale pretty well, experiencing only small performance decrease due
to the more difficult task, whereas MLP models with 3 and 4 subgoals require
significantly more data.
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The reason for this is that RN models inherently encode the fact that all
subgoals are identical except for their positions, whereas MLP models have to
learn that through trial and error. For example, once the model learns that
collecting one subgoal gives it a reward, an RN model automatically knows
this for all subgoals, but the MLP has to learn it again for each additional goal,
which requires additional training data.
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6 Summary

The core question of this work is whether including an explicit skill modeling
component in policy-based Reinforcement Learning can improve their capability
to cooperate with various agents across different skill levels. In order to evaluate
this hypothesis, I built three multiagent environments and in each of them,
trained models with different levels of access to their partner’s skill levels.

The experimental results suggest that while there is some promise in this
approach, it likely needs to be revised to support environments with more
subtle cooperation mechanisms, as well as be more robust to wide ranges of
possible skill levels that could occur in those environments.

In the two environments designed to explicitly reward cooperation, the skill
modeling approach worked very well in improving the agents’ interactions when
only two skill levels were considered. The agents were capable of correctly
estimating their partner’s identity and using that information to choose the
right actions in order to maximize their joint reward.

These experiments also showed that intuitions about cooperation capabilities
of various agents in certain environments can be quite misleading – in an
environment where it seems necessary to have an internal model of the partner’s
skill level, even a memoryless model managed to reach a seemingly impressive
result of 80% accuracy by developing a distance-based heuristic, in a way storing
information in the agents’ relative positions.

However, when including a wider range of partner agents, the performance
improvement greatly diminished. In this case, a difficult issue has to be faced
in representing the skill level – for an agent to act with a copy of itself, it needs
to know its own skill level, which is not possible before actually taking some
actions. What’s more, if an agent acts with a partner that’s more skilled than
itself, it would receive a skill level input greater than anything in its training
data leading to difficulties in generalization. The normalization-based method
used in this work exhibits some convenient theoretical properties, but is by no
means the only possible choice.

Finally, the experiment in the basic Traveling Salesman Problem environ-
ment without extra mechanisms also doesn’t show major improvements over
the baseline. To some extent, this is likely due to the specific task that the
agents have to fulfill – while it is intuitive that perfect coordination would yield
better results than a total lack of cooperation, the degree to which this impact
would be noticeable is unclear. What’s more, given how short the episodes are,
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taking even a few exploratory or coordination-oriented actions can significantly
change the performance.

6.1 Future directions

There are various directions which could yield more robust results by using
the architecture and the ideas described in this work. They can be grouped in
three main categories:

• Modifications of the core algorithm

• Modifications of the peripheral elements

• More robust evaluation environments

Regarding the core algorithm, the briefly explored training procedure where
the skill modeling component is trained separately from the agents themselves
showed some promising results, which likely could lead to a better perfor-
mance and generalization across various agents, avoiding the non-stationarity
of multiagent training.

The peripheral elements primarily refer to the issue of skill representation
and normalization – in order to use an agent’s skill level for decision-making,
we must first define what a skill level is, and then represent it in the form
of a number or a vector, and this turns out to be nontrivial, especially given
additional constraints on the expected behaviour of those values. It could
also involve changing the exact self-play training procedure, e.g. by using the
previous version as a partner for self-play rather than a copy of the newest
agent, or introducing some kind of a schedule to the training.

Finally, using environments that put more emphasis on ad-hoc cooperation
could exhibit stronger results even with the current approach. Notable exam-
ples include the Overcooked environment [55] introduced to accentuate the
mechanisms of human-AI cooperation, and the game of Hanabi [1] which serves
as an important benchmark in partially observable cooperative multiagent prob-
lems. What’s more, pursuing the skill-modeling angle further, environments
with mechanically difficult components could also be suitable, like the game of
StarCraft 2 [56].

In the end, this work has shown that the proposed idea displays promising
results in facilitating ad-hoc cooperation between RL agents, and with additional
experiments could be refined to a versatile MARL algorithm.
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A Backpropagation Derivation

Backpropagation is the fundamental algorithm making it possible to train deep
neural networks in an end-to-end manner. [22] Consider a network consisting
of L layers, defined by the equation:

zl = wlal−1 + bl

al = σ(zl) (A1)

where wl, bl are the weights and biases at layer l, zl is the weighted input to
layer l, and al are the activations. Note that zl, al, bl are vectors and wl are
matrices of appropriate dimensions.

Let’s also decide that we’re optimizing a quadratic loss function defined as
follows:

C = 1
2n

∑
x

||y − aL(x)|| (A2)

It could easily be replaced with any differentiable loss function, but this one is
used for simplicity of the proof.

First, let’s define the error of a neuron j in layer l as

δlj ≡
∂C

∂zlj
(A3)

This corresponds to the intuition that we’re seeking the derivative with respect
to the weights, and serves as a stepping stone to that goal.

The main idea of backpropagation, as suggested by the name, is that given
the gradients at a certain layer, we can compute the gradients of the previous
one, in a way sending the signal backwards. Therefore as a first step we need
to find the error term of the last layer:

δLj = ∂C

∂aLj
σ′(zLj )

δL = ∇aC � σ′(zL) (A4)

where � is the Hadamard (component-wise) product, and the second equation
is the matrix-based form of the previous, component-based equation.
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Now, with this starting condition, we can build a recurrence relation using
the chain rule of differentiation. Since we know how al depends on al−1, we
can use this to obtain the following expression:

δl = ((wl+1)T δl+1)� σ(zl) (A5)

The only remaining step is actually computing the gradients with respect
to the weights, using the error terms δl. For the bias vectors, this turns out to
be quite simple:

∂C

∂blj
= δlj (A6)

And for the weight matrices, it also follows simply Equation A1:

∂C

∂wljk
= al−1

k δlj (A7)

Now all that’s needed is putting all these components together. The entire
process is as follows:

1. Compute all weighted inputs and activations zl, al (Equation A1)

2. Compute the loss function C (Equation A2)

3. Compute the last error term δL (Equation A4)

4. Recursively compute the remaining error terms δl (Equation A5)

5. Compute the bias and weight gradients (Equations A6 and A7)

This procedure is implemented in a highly-efficient manner using the vector-
ized formulation in various autograd libraries such as PyTorch [50], TensorFlow
[51] or Jax [57] and as such can be used in training the neural networks used
in this work.
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B Policy Gradient Theorem Derivation

Policy Gradient-based algorithms such as PPO work by directly optimizing the
reward function by changing the policy’s weights with gradient descent [58].
Formally speaking, we’re trying to find a policy πθ : S → ∆A that maximizes
the expected reward obtained over the course of an episode:

θ∗ = arg max
θ

J(πθ) = arg max
θ

E
τ∼πθ

[R(τ)] (B1)

A necessary building block for this is an estimate of the gradient ∇θJ(πθ). In
order to obtain it, let’s explicitly write out the expectation from Equation B1:

∇θJ(πθ) = ∇θ E
τ∼πθ

[R(τ)] = ∇θ

∫
τ
P (τ |θ)R(τ) =

∫
τ
∇θP (τ |θ)R(τ) (B2)

To take this further, something called a log derivative trick is necessary: for
any differentiable function f : Rn → R it is true that:

∇xf(x) = f(x)∇x log f(x) (B3)

Indeed, it can be verified as follows:

RHS = f(x)∇x log f(x) = f(x) 1
f(x)∇xf(x) = ∇xf(X) = LHS (B4)

With this, setting f : θ 7→ P (τ |θ) we can continue the derivation:

∇θJ(πθ) =
∫
τ
∇θP (τ |θ)R(τ) =∫

τ
P (τ |θ)∇θ logP (τ |θ)R(τ) =

E
(st,at)∼πθ

[∇θP (τ |θ)R(st)] (B5)

Because a trajectory is just a sequence of states and actions, this can be
expanded into the final form:

∇θJ(πθ) = E
τ∼πθ

[
T∑
t=0
∇θ log πθ(at|st)R(τ)

]
(B6)
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