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Machine learning is a versatile tool allowing for, among other things, training

intelligent agents capable of autonomously acting in their environments. In

particular, Multiagent Reinforcement Learning has made tremendous progress

enabling such agents to interact with one another in an e�ective manner.

One of the challenges that this �eld is still facing, however, is the problem of

ad-hoc cooperation, or cooperation with agents that have not been previously

encountered.

This thesis explores one possible approach to tackle this issue, using the

psychology-inspired idea of Theory of Mind. Speci�cally, a component de-

signed to explicitly model the skill level of the other agent is included, to

allow the primary agent to better choose its actions.

The results show that this approach does in fact facilitate better coordination

in an environment designed to test this skill, and is a promising method for

more complicated scenarios.

The potential applications can be found in any situation that requires coordi-

nation between multiple intelligent agents (which may also include humans),

such as tra�c coordination between autonomous vehicles, or rescue operations

where autonomous agents and humans have to work together to e�ciently

search an area.

Keywords: machine learning, multiagent systems, reinforcement learning,

arti�cial intelligence, theory of mind
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1 Introduction

The problem of cooperation between intelligent agents (including humans) is

one of the biggest challenges facing AI research in recent years [1]. In many

�elds it is desirable to have autonomous agents capable of cooperating with

arbitrary other agents in an e�cient and safe manner, but that skill is far from

trivial and requires specially designed approaches that take into consideration

the unpredictability of other agents.

As an example, consider self-driving cars. If, at some point, one AV (Au-

tonomous Vehicle) manufacturer obtains a 100% market share and pushes any

competition out of the picture, it can have complete control over coordination

protocols, explicit or implicit � however this is unlikely to be the case. In the

foreseeable future, AVs will need to share roads not only with other AVs, but

also with humans, and humans are anything but predictable [2]. And yet, they

mostly manage to intuitively understand other members of tra�c, avoiding too

many collisions.

One mechanism that seems to contribute to this phenomenon in humans is

the so calledTheory of Mind [3]. It describes the way that people internally

impute mental states to others in a way that, while not directly observable,

allows to make predictions on their behaviors. It has been extensively studied

and observed to happen both in humans and other primates, and recently it was

also shown that it is possible to create AI systems that can exhibit ToM-like

properties when observing arti�cial agents [4].

The main approach to creating arti�cial autonomous agents isReinforce-

ment Learning (RL) [5], in which the key idea is trial and error. By taking

(at �rst, randomly) actions in the environment and combining them with ob-

tained rewards, it can be inferred which actions were bene�cial, and which were

harmful. After collecting a batch of experience, the agent is modi�ed to take

better actions, and the cycle continues.

In particular, Deep Reinforcement Learning (DRL) is a way of training

RL agents by using deep neural networks. This approach has proven to be

e�ective, for example in the games of Chess and Go [6], in Atari games [7] and

in the multiplayer game DOTA 2 [8]. Some approaches to DRL involve learning

the expected value of each state of the environment, which is then used to

choose the next action. Others, which will be the focus here, directly optimize

a policy function mapping states to actions so that it reaches a maximal reward

on average.
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When several agents are acting together in a single environment,Multia-

gent Reinforcement Learning (MARL) [9] becomes relevant. This carries

many new challenges, such as non-stationarity [10] and the lazy agent problem

[11] which makes it more di�cult to accurately perform credit assignment.

Machine Learning [12] is a fundamental concept underlying Reinforcement

Learning describing a mechanism for building programs (or mathematical

models) which are not fully speci�ed by the human designer. Instead, they only

provide a general structure of the algorithm, and then selecting its parameter

via an automatic process of training given some data.

Deep Learning [13] is a modern take on Machine Learning, where deep

neural networks are utilised. They're extremely versatile algorithms that can

be adapted for all sorts of applications like Computer Vision [14], Natural

Language Processing [15], Visual Understanding [16], Reinforcement Learning

[7] and more. They are also proven to be capable of approximating arbitrary

functions with enough hidden units and given su�cient data [17].

The problem of ad-hoc multiagent cooperation can also be seen as a form of

meta-learning, which is a general way of training agents on a variety of tasks, so

that they can e�ciently solve other, previously unseen tasks [18]. In this case,

each potential partner agent is a di�erent task (in the meta-learning sense), so

by learning to cooperate with various partners, the agent can become better at

cooperating with new ones.

An interesting property of multiagent learning systems trained via self-play

is that they develop autocurricula [19] allowing for an emergent progression from

simple to complex challenges. In competitive games, this can be understood as

the fact that since the agent is its own opponent, it has to learn to counter any

new strategy it creates. In a cooperative setting, it can take the form of social

dilemmas, where agents need to make a choice between their self-interest and

the collective goal.

This thesis focuses on the applications of ToM-based approaches to improve

RL-produced agents' ability to cooperate with other agents that have not

previously been encountered in the training process. In particular, the skill

level of an agent is postulated to be a metric that's relevant for decision-making

that involves cooperation.

To evaluate this hypothesis, I tested a neural network architecture designed

to explicitly learn to estimate the other agent's skill level, and then use that

information in deciding the policy. The agent is then evaluated with a range of
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partner agents on various skill levels.

All of that is performed in an gridworld-based environment, following

common practices of AI Safety research [20] for testing novel ideas. The agents

cooperate in a task of foraging their world for subgoals, and then reaching a

�nal goal, while sharing the reward signal making it a fully cooperative setting.

1.1 Thesis goals and problem statement

The main goal of this thesis is exploring a new way of facilitating cooperation in

multiagent reinforcement learning system by introducing a component dedicated

to learning the skill level of its partner. This architecture is then evaluated in

specially designed environments, and compared both with a baseline model,

and one that receives the skill level as an input.

Leading up to this, I describe the theory of Reinforcement Learning and

its multiagent variant, including the standard approaches and formalism, as

well as less-known techniques that are relevant for the experiments, such as the

Relation Network.

1.2 Structure

The theoretical background on Machine Learning and Neural Networks is

introduced in Section 2, followed by a description of Reinforcement Learning,

including the problem formalism and standard algorithms in Section 3.

Following that, Section 4 describes the experimental setup, consisting of

the environment in which the RL agents act, the architecture of the agents

themselves and the training procedures for policy optimization.

Section 5 describes the results of the aforementioned experiments, and

Section 6 wraps everything up with a summary of the entire work.
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2 Machine Learning

The goal of this and the following section is building up a coherent theory

of all the key concepts used in this thesis, with as much mathematical rigor

as reasonably possible. In the end, all the necessary notation should be

introduced, justi�ed and ready to be used in the description of the actual task

and experimental design. To this end, I'll take a bottom-up approach, starting

from elementary concepts, and ending with the speci�c niche of Multiagent

Reinforcement Learning.

Machine Learning in its most general form can be described as a set of

methods and algorithms that are only speci�ed with a general architecture

and a certain objective, and then use data to fully specify the algorithm in

the process of training. It is generally divided into three parts:supervised

learning where the data includes speci�c labels that are to be learned,unsu-

pervised learning where the data doesn't contain a uniquely given objective,

and reinforcement learning , the focus of this work, where the algorithm

interacts with an environment, generating its own data, optimizing for a given

reward function. Due to their respective relevance, I will provide a brief de-

scription of supervised learning now, skip unsupervised learning, and expand

on reinforcement learning further on in this section.

2.1 Supervised Learning

In this setting, the task can be described function approximation. Given an

input spaceX , an output spaceŶ, a label spaceY, a datasetD = f (x i ; yi )g

wherex i 2 X , yi 2 Y , and a loss functionL : Ŷ � Y ! R, you want to �nd

a function f : X ! Ŷ called amodel that minimizes the mean loss over the

dataset:
1
�D

�DX

i =1

L (f (x i ); yi )

Note that it is not true that Y = Ŷ even though quite often it happens to be

the case, e.g. in regression problems whereY = Ŷ = R. In the other main type

of supervised learning, which is classi�cation, the label space is a discrete set of

categoriesC such that �C = M < 1 . The output space can be the real vector

spaceŶ = RM �= (C ! R) interpreted as log-probabilities of a distribution from

the set of all probability distributions on C, denoted� C. It's also isomorphic

to the set of functionsC ! R mapping each category to its log-probability.
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However, in this case we can choose a selection function� : Ŷ ! Y that maps

the model's predictions to actual labels, e.g.�(ŷ) = arg maxŷ choosing the

highest-probability element inC.

An important concept to keep in mind when talking about Machine Learning

is generalization , since in actual use cases, we want the algorithm to work

well also on new, previously unseen inputs. That's why it is useful to view

the datasetD as a �nite random sample from a joint probability distribution

p(x; y). In this case, the task is to �nd a good approximation of the conditional

probability p(yjx), quanti�ed as minimizing the expected loss

E
x;y � p(x;y )

L (f (x); y)

With this formulation, it is no longer su�cient to just set 8(x i ;yi )2D f (x i ) := yi ,

which is the trivial solution to the problem with a �nite dataset. Instead, the

model needs to, in a sense, understand the underlying structure of the dataset

so that it performs well on the entire distribution.

2.2 Neural Networks

A neural network is a versatile machine learning algorithm that can be applied

to supervised, unsupervised and reinforcement learning. It is a parametrized

function composed of one or more layers, with each layer being a linear trans-

formation followed by an activation function applied component-wise to its

output.

If, as is usually the case, the input and output spaces are real vector spaces,

we haveX = RN and Ŷ = RM . In the most common variant of a neural

network called the multi-layer perceptron (MLP), the n-th layer can be then

expressed as

xn = g(Wnxn� 1 + Bn ) (1)

wherexn is called the n-th hidden layer (withx0 = x being the input to the

network), g(�) : Rln ! Rln is an activation function, ln is the size of the n-th

layer such that xn 2 Rln . The parameters of the layer are theweight matrix

Wn 2 Rln � ln � 1 and the bias vector Bn 2 Rxn . Often, the weight and the bias

are collectively referred to as the weights of the layer (or of the network) and

are denoted by� .

Quite often, the activation function is in fact just a function g: R ! R,

and is applied to the input vector elementwise, by considering each component
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separately. It also needs to be di�erentiable w.r.t. its input almost everywhere,

which will be necessary for training the network. The most common choice

is ReLU (Recti�ed Linear Unit) [ 13] de�ned as ReLU(x) = max(0; x). It

corresponds a very rough idea of a biological neuron, where the inputs are

summed, and if the total exceeds some threshold, the neuron �res proportionally

to the inputs.1 Other common choices include the hyperbolic tangenttanh(x) =
ex � e� x

ex + e� x and the sigmoid function� (x) = 1
1+ e� x . In Figure 1 you can see a visual

comparison of each of these functions.

Figure 1: A comparison of the most commonly used activation functions:
ReLU, tanh and sigmoid. Note that the sigmoid function is the only one where
f (0) 6= 0 which can cause issues in deep networks, but it does ful�ll the property
8x2 R 0 < f (x) < 1 which makes it suitable as a �nal activation function in
situations where we want the output to be interpretable as a probability.

A Feedforward Neural Network, or Deep Neural Network, can then be

constructed by stacking several linear transforms as de�ned in Equation 1

interspersed by activation functions. The word �deep� here refers to the

number of layers � the depth of the network. The dimensionality of each

hidden representationhn is called thewidth of the layer, or the number of

hidden units. This is the same as the size of thexn activation vector. A simple

schematic representation of a neural network can be seen in Figure 2.

In summary, a neural network can be viewed as a parametrized function

NN� (x) di�erentiable almost everywhere w.r.t. � and x, with a speci�c layer-

based internal structure that allows for �exibility and modularity (note: NN0
� 0 �

1Keep in mind, this is not how biological neurons actually work � but it works well for
arti�cial neural networks, and biological accuracy is not a goal in itself.
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NN� is also a neural network as long as the dimension of the output ofNN� is

the same as the dimension of the input of NN0� 0).

Figure 2: A graphical representation of a neural network. Each node represents
one component of a vector (either input, hidden or output), and each edge
represents a component of a weight matrix.

2.2.1 Gradient Descent

By far the most common way of training neural networks � by which I mean,

�nding a set of weights for which the network manages to approximate the

target distribution p(yjx) � is the Gradient Descent algorithm, or one of

the many algorithms that are based on it. At its heart, it is a fairly simple

idea dating back to Augustin-Louis Cauchy in 1847 [21] when he applied it

to the problem of solving systems of simultaneous equations. To describe it

informally: �rst, you choose an arbitrary argument (here: arbitrary weights) as

a starting point. Then, evaluate the gradient of the loss function at that point,

and update the weights in the direction of the negative gradient � and repeat

until convergence. A more formal description can be found in Algorithm 1.

In practice, a commonly used approach is called Stochastic Gradient Descent

(SGD), where instead of computing the gradient using the entire dataset at

once, only a subset (or batch) of data is used at each iteration. This allows for

more frequent updates, and counteracts over�tting due to extra stochasticity.

2.2.2 Adam optimizer

In many applications, including this work, the Gradient Descent algorithm only

describes the main idea of the optimization method. The exact algorithm used

to �nd the optimal weights is Adam [?], which is a modi�cation of Gradient

Descent that allows for adaptive learning rates for each weight individually,
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Algorithm 1 Gradient descent

1: Require: � : learning rate, a real number
2: Require: f (� ) : the function to be optimized
3: Require: � 0 : Initial parameter vector
4: t  0
5: while � t not convergeddo
6: t  t + 1
7: gt  r � f (� t � 1)
8: � t  � t � 1 � � � gt

9: return � t
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helping the network �nd better weights in a shorter time. The details of Adam

can be found in Algorithm 2.

Algorithm 2 Adam optimization algorithm. Good default settings are� =
0:001, � 1 = 0:9, � 2 = 0:999, � = 10� 8. All operations on vectors are element-
wise, and� t

1, � t
2 denote� 1 and � 2 to the power t.

1: Require: � : stepsize
2: Require: � 1; � 2 2 [0; 1) : Exponential decay rates for the moment estimates
3: Require: f (� ) : Function to be optimized
4: Require: � 0 : Initial parameter vector
5: m0  0
6: v0  0
7: t  0
8: while � t not convergeddo
9: t  t + 1

10: gt  r � f (� t � 1)
11: mt  � 1 � mt � 1 + (1 � � 1) � gt

12: vt  � 2 � vt � 1 + (1 � � 2) � g2
t

13: m̂t  mtn(1 � � t
1)

14: v̂t  vtn(1 � � t
2)

15: � t  � t � 1 � � � m̂tn(
p

v̂t + � )

16: return � t

2.2.3 Backpropagation

The remaining piece necessary to get a neural network-based machine learning

algorithm is a way to compute the gradientsr � f (� ), where

f (� ) =
1
�D

�DX

i =1

L (NN� (x i ); yi )

In conjunction with the Gradient Descent algorithm or its modi�cation like

Adam, this would be enough to get an algorithm �nding� minimizing the loss

as de�ned above.

The way the gradient can be obtained is by using the layered structure of

neural networks and an algorithm calledbackpropagation [22]. The essence

of this approach is computing the gradient w.r.t. the output layer's weights,

and using the derivative chain rule to iteratively get the gradient w.r.t. each

previous layer. The exact procedure is laid out in Appendix A.
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2.3 Recurrent Neural Networks

In applications that possess a temporal structure, it can be bene�cial to use

models that have some sort of memory or internal state to allow for maintaining

information between consecutive timesteps. For this purpose, Recurrent Neural

Networks [13] have been introduced. The core idea here is that the network

makes uses of a hidden stateht 2 Rnh that's updated between each consecutive

timestep in the following way:

ht = g(Whh ht � 1 + Whx x t + Bh)

where ht is the state andx t is the input at the t-th timestep. To properly

compute the gradients of the loss function, it is necessary to use a slightly

modi�ed version of the backpropagation algorithm, called Backpropagation

Through Time [23], which takes into consideration the temporal structure and

ensures proper accumulation of gradients.

2.3.1 Long Short-Term Memory Networks

In practice, RNNs turn out to have di�culties in retaining long-term relations

across the timesteps, which prompted creating an enhanced version called the

Long Short-Term Memory Network, or LSTM [15] which deals with this issues

by introducing learnable gates in the state update rule. Speci�cally, an LSTM

cell is updated as follows:

f t = � (Wf � [ht � 1; xt ] + bf )

i t = � (Wi � [ht � 1; xt ] + bi )

~Ct = tanh( WC � [ht � 1; xt ] + bC )

Ct = f t � Ct � 1 + i t � ~Ct

ot = � (Wo � [ht � 1; xt ] + bo)

ht = ot � tanh(Ct )

wherei t is called theinput gate , f t � forget gate , ct � cell state , ot � output

gate . A graphical representation of this computation can be seen in Figure 3.
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Figure 3: A visual depiction of the computation within an LSTM cell [24].

2.4 Relational Networks

In some applications, the network needs to process the positions of several

identical objects. By default, a regular MLP network has to learn this property

from experience, but with an appropriate architecture, this property can be

enforced in the network, making the training easier. This is the purpose of the

Relation Network (RN) [25], which in its original form was designed to enhance

image processing applications. It works by processing the representations of

each object pair independently, and then summing the outputs together � this

way, due to the commutative property of addition, indistinguishable objects

are processed in the same way and the output of the RN is invariant under the

operation of swapping them.

The original formulation of RN is as follows:

RN(O) = f �

0

@
X

i � j

g� (oi � oj )

1

A

wheref � and g� are neural networks,O = f oi g are objects present in the input,

and the � operator is the direct sum, here equivalent to the concatenation of

its operands.

In this work, the Relation Network has been adapted to the speci�c situation
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of processing entities in a gridworld-based reinforcement learning environment.

Gridworlds are explained in more detail in Section 3.1.5. Firstly, the represen-

tation of each object is as follows:

oi = x i � yi � f i � et i

where(x i ; yi ) are the grid coordinates of the objectoi normalized to the range

[0; 1), f i 2 B is a �ag whose meaning depends on the type of the object, for

example indicating whether an object is active or inactive,t i is the type of the

object, and et 2 Rne is the embedding of the object typet. The embedding is

a trainable vector that allows the network to distinguish between objects of

di�erent types, while treating all objects of the same type the same way.

What's more, in RL applications, one object is the most important � the

agent itself. The other objects are relevant mostly in relation to it, while their

relations between each other are not as signi�cant, which is why instead of

summing over all pairs of objects (quadratic in the number of objects), the

agent's representation is always used as the �rst object in the direct sum, so

the �nal formulation of the relation network becomes

RN(O) = f �

 
X

i

g� (o0 � oi

!

(2)

whereo0 is the agent's own representation.

This architecture can be used as an input layer for other models. For

example, the output of the RN can be then used as the input to an LSTM cell,

for what is called RNLSTM later in this work.
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3 Reinforcement Learning

Reinforcement learning is the third of the aforementioned types of machine

learning in which the task is to �nd a certain policy mapping states of the

environment, to actions that can be taken by the agent. Unlike in supervised

learning, there are not labels that can be used as a direct objective. In fact, there

is not even a single speci�ed dataset to learn from. Instead, the reinforcement

learning problem is de�ned by anenvironment and a reward which de�nes

the objective.

Figure 4: A schematic depiction of a reinforcement learning problem [26].

As depicted in Figure 4, theagent (which is the RL equivalent of a model)

takes actions in the environment and changes it in some way. Then it receives

the updated observation, as well as a reward signal.

3.1 Markov Decision Processes

A Markov Decision Process, or MDP, is a mathematical formalism common

for specifying RL problems. To be precise, an MDP is de�ned as a tuple

(S; A; T; R) whereS is a set of states,A is a set of actions,T : S � A ! � S

is the transition function determining the probabilities of states based on the

previous state and the action taken, andR : S ! R is the reward function2

de�ning the objective to be optimized.

On the agent side, we have apolicy � : S ! � A whose purpose is choosing

the next action, possibly in a nondeterministic way. Together, they produce

trajectories obtained via the following process: start with an initial states0,

choose an actiona0 based on� (s0) (e.g. via sampling from the distribution3)

2Depending on the source, the reward function can be de�ned di�erently, e.g. asR : S �
A ! R. Those de�nitions are equivalent and out of convenience, I'll use the one present in
the main text

3In some cases, especially with deterministic policies, it might be bene�cial to use a
di�erent method for the sake of exploration.
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and observe the next states1 sampled from the distribution T(s0; a0) and the

reward r0 = R(s1). The process is repeated until the end of the episode, yielding

a trajectory � = hs0; a0; r0; s1; a1; r1; : : : ; sn ; an ; rn i 2 T . Through slight abuse

of notation, we can then de�ne the total reward of a trajectory asR(� ) =
nP

t=0
r t .

To solve an MDP is to �nd a policy � � which maximizes the expected total

reward when evaluated in the environment:

� � = arg max
�

E
� � �

R(� )

where � � � denotes the process of sampling actions from the policy

described above.

It is important to denote that a policy � can also be interpreted as a

conditional probability function � (ajs) 2 R. Both of these formalisms are

equivalent and are often used interchangeably in literature.

3.1.1 Partially Observable Markov Decision Processes

While POMDPs [27] are not used in this work, they are still worth mentioning

due to their prevalence in Reinforcement Learning. They re�ect the idea of

imperfect information � instead of observing the real statest , the policy receives

an observation generated by a functionO: S � A ! �
 where
 is the set of

possible observations. The observation in stept depends on the new statest

and the previous actionat � 1 which led to that state.

Formally, a POMDP is a tuple (S; A; T; R; 
 ; O). It is a generalization of

regular MDPs, since each MDP can be converted into one by setting
 = S

and O(s; a) = � s. It also turns out that each POMDP can be represented as

an MDP that combines the transition and observation mechanisms in its own

transition function.

Trajectories and total rewards in POMDPs work the same way as in MDPs,

with the only di�erence that the input to the policy is o � O(s; a) rather than

s directly.

3.1.2 Decentralized POMDPs

A generalization of POMDPs that allows for multiple agents is called Dec-

POMDP [28]. It takes the approach of splitting the environment action into a

joint action taken by multiple agents, each of which receives its own observation.

Formally, a Dec-POMDP is a tuple(S;f A i g; T; f Ri g; f 
 i g; O) where f A i g is
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the set of actions that can be taken by the agenti , f 
 i g are that agent's

possible observations andRi and each agent's reward functions. By considering

the joint actions A = � i A i and joint observations
 = � i 
 i this can be viewed

as a POMDP, however it places a limitation in the information shared between

agents.

3.1.3 Time horizon and discount factor

One component that I omitted from the de�nition of MDPs and their general-

izations is thediscount factor 
 . Its purpose is ensuring that even for in�nite

horizon environments, the total reward of a trajectory remains �nite as long as

the rewards themselves are bounded.

R(� ; 
 ) =
1X

t=0


 t r t < 1 (3)

In this work, the considered environments maintain a �nite horizon � so

while its value would still have some impact on the learned policies, it loses its

theoretical justi�cation and is therefore set to
 = 1.

The intuition behind the discount factor is that it determines how much

attention is paid to the distant future, as compared to the near future. In the

case of
 = 1, sacri�cing 0:1 reward in this step to receive0:2 reward in the next

step is well worth it. Alternatively, with 
 = 0:25, the respective discounted

rewards are0:1 and 0:05, which makes the other decision to seem better.

For this reason, the discount factor can be seen in two ways � either as a

property of the MDP itself, or as an implementation detail of the algorithm

solving it. The result is largely the same, but the latter option gives more

�exibility in the possibility of adjusting the discount factor to generate di�erent

behaviors. What's more, in many environments of interest, there is no obvious

value for the discount factor, and it has to be chosen arbitrarily anyways, which

is why I chose to not include it in the de�nition of MDPs.

In practice, the discount factors used are often very close to1, like 0:9 or

0:99. This allows for in�nite-horizon problems to get the �nite total reward

property, while not making the agent too myopic. In �nite-horizon problems,

the discount rate is often equal to1.
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3.1.4 Value function

An important concept de�ned for Markov Decision Processes is that of avalue

function . Intuitively, it is meant to represent the expected reward that will

be collected starting from a certain state. However, there is not a unique way

of choosing the actions in the process of unrolling an episode, hence di�erent

versions of a value function can be used depending on the context.

Given a certain policy� , we can take the approach of choosing the following

action from that policy, giving the value of a states under the policy � [26]

V � (s) = E� f Rt jst = sg = E�

( 1X

k=0


 kr t+ k+1

�
�
�
�
�
st = s

)

(4)

If the policy � is the optimal policy � � , we can also consider the optimal value

function V � (s) which is the �true" value of a state in the environment.

Furthermore, it's often useful to consider the state-action value function

Q� (s; a), where the process is similar: in the states you take the actiona, and

then proceed to act according to the policy� . These two views are equivalent

as long as we have access to the MDP transition dynamics:

V(s) = max
a

Q(s; a) (5)

Q(s; a) = E
s0� T (s;a)

R(s; a) + 
V (s0) (6)

Alternatively, the value function can be de�ned recursively using the Bellman

equation [29]. There, the value of a state is expressed as:

V � (s) = R(s; � (s)) + 
 E
s0� T (s;� (s))

V � (s0) (7)

And the value under the optimal policy is given by the Bellman optimality

equation:

V � (s) = max
a

R(s; a) + 
 E
s0� T (s;a)

V � (s0) (8)

3.1.5 Gridworlds

A gridworld is a useful type of an MDP that allows to abstract away real-world

mechanics to focus on a speci�c property of the environment being considered.

They are especially suitable for basic research, where the subject of investigation

is fundamental principles and mechanisms, rather than real-world e�ciency,
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most notably in the area of AI Safety [30].

It has a certain width w and height h, and containsw � h grid cells aligned

in a rectangle. Each of those grid cells contains 0 or more objects from a set of

objectsO, some of which may be agents. Each object has a position in grid

coordinates(x; y), as well as a type from a �nite set of typesT.

As an example, consider a labyrinth gridworld in which a single agent needs

to reach a goal, navigating through a maze of walls which together occupyW

grid cells. It would have the typesT = f agent; goal; wallg, and the objects

O = f agent; goal; wall1; : : : ; wallW g4

There are various ways of representing a gridworld. For the purposes of RL

agents, it is convenient for the representation to have the form of a real-valued

tensor. The most straight-forward way is by using the grid topology directly,

along with the binary encoding of each cell's contents. In other words, the state

of a gridworld would be a tensors 2 Rw� h� �O . This however leads to very large

and sparse state tensors and can be very ine�cient. It also doesn't generalize

to cases with a di�erent number of objects.

A simple modi�cation would involve using the objects' types instead, causing

the state representation to stay in the constant spaces 2 Rw� h� �T as long as the

number of types remains constant. This relies on the assumption that objects

of the same type are indistinguishable, and that there can't be two objects of

the same type in the same grid cell. In both of these cases, extra information

can be conveyed by concatenating it to the tensor in a way dependent on the

speci�c situation.

If the gridworld is relatively sparse, a dense state representation might be

more suitable. The basis here is concatenating the coordinates of objects in a

�xed order, with s = [ x1; y1; x2; y2; : : : ; x �O ; y �O ]| 2 R2 �O . This representation

can be supplemented with extra information by injecting it after each (x,y)

coordinate pair, as long as the order remains consistent.

An alternative used in this work is using Relational Networks. Using the

notation from Section 2.4, we can setO = O with the representation of each

object as described there

oi = x i � yi � f i � ei

where the type embeddingei corresponds to one of the types inT.

4Using agent and goal in both the object and type sets is a slight abuse of notation � in
general the two sets can be completely di�erent
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This method has many properties that make it especially suitable for general-

ization in the reinforcement learning setting. First of all, it explicitly introduces

a symmetry with respect to the operation of swapping objects of the same type,

which can signi�cantly simplify the task of the learning algorithm. What's

more, it allows for seamless generalization to di�erent gridworld sizes, di�erent

object counts, and even di�erent type counts. A model trained with a certain

set of objects can be easily used in a di�erent environment with more (or fewer)

objects, which wouldn't be possible with a dense representation since its input

layer's size would have to be adjusted. Due to the coordinate normalization, it

can also be used in a larger environment, which wouldn't be possible with the

grid-based representation.

3.2 Policy Gradient

The main task of a Reinforcement Learning algorithm is to �nd a policy� (s)

which maximizes the expected return when evaluated in an environment. While

there are various methods of approaching this, the one used in this work is

based on the idea ofpolicy gradients .

In a way, it is the most direct way of solving it in the spirit of machine

learning. The reward function can be seen as a function mapping policies to

real numbers (by evaluating them in the environment), and if that is then

di�erentiable with respect to the policy's parameters, you can simply use

gradient ascent to �nd the optimal parameter set.

In other words, we're treating RL as a standard optimization problem,5

where the goal is to maximize the following reward function:

J (� ) = E� � � � R(� ) (9)

Assuming proper di�erentiability properties of the policy, this can be solved

via gradient ascent, which is the same thing as gradient descent (see: Section

2.2.1) with the update multiplied by � 1, and therefore can also use the modi�ed

approaches like the Adam algorithm.

Of course, this would require an expression for an estimate of the gradient

r̂ � J (� ) in terms of the trajectory or its components (i.e. observations, actions

5Note that while we can to some extent treat it as such, it is a bit more complicated than
that since the data itself changes depending on the current policy weights, adding an extra
layer of complication over typical supervised learning.
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and rewards). It turns out that this is, in fact, possible to obtain analytically,

and the �nal policy gradient equation is as follows:

r E� [R(� )] = E� [R(� )r log� (� )] = E�

" 
X

t

R(st )

!

r log

 
Y

t

� (at jst )

!#

(10)

The full derivation can be found in Appendix A. The main value of this

equation is in the fact that the gradient can be estimated from empirical data

using only the rewards and the probabilities of actions taken in the trajectory,

both of which can be sampled by simply rolling out the environment with a

di�erentiable policy.

An important observation is that due to the Markovian assumption, actions

taken at step t0 cannot a�ect rewards obtained in earlier stepst < t 0. Since

adding a baseline value to the rewards does not change the expected value of

the policy gradient, this means that the total rewardR(� ) =
P

t R(st ) can be

replaced with the reward-to-goR̂t =
P

t0>t
R(s0

t ) without increasing the bias of

the estimation, but reducing its variance.

This is the basis of the REINFORCE algorithm [31] described in Algorithm 3.

Algorithm 3 REINFORCE, a basic Policy Gradient algorithm.

1: Require: � 0 : initial policy parameters
2: Require: � : learning rate
3: k  0
4: while � k not convergeddo
5: Collect a batch of trajectoriesfD kg with the policy � � k

6: Compute rewards-to-goR̂t

7: Compute the policy gradient estimate as:

ĝk =
1
�Dk

X

� 2D k

TX

t=0

r � log� � (at jst )j � k R̂t

8: Update the policy weights using gradient ascent or a related algorithm:

� k+1 = � k + � ĝk

9: k  k + 1
10: return � k

An important thing to keep in mind is that due to the fact that the sampling

is performed according to the current policy, a single batch of data can only be
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used for a single gradient update, making it an on-policy algorithm. What's

more, this estimate tends to have a very high variance. Finally, since the

reward is summed across the entire episode, credit assignment becomes an issue

and the agents might have di�culties recognizing which actions led to good

outcomes, and which were associated with high returns by coincidence.

Due to these problems (sample ine�ciency, high variance, credit assignment),

REINFORCE is rarely used in practice and is infeasible for most RL problems.

However, similarly to gradient descent, modi�ed approaches have emerged,

designed to counteract those issues, one of which will be described now.

3.2.1 Proximal Policy Optimization

The PPO algorithm [32] attempts to �x the aforementioned issues by including

some changes to the algorithm that allow it to work more e�ciently, even if it

is not quite as elegant theoretically.

First of all, to improve the credit assignment issue, it utilizes an actor-

critic approach, with a value prediction network used to estimate the expected

return of a certain state. This is formalized as theadvantage estimated as

A t = R̂t � V̂ (st ) With this, it is possible to determine whether a certain action

was better than expected (A t > 0) or worse (A t < 0). The value network can

either be separate from the policy, or can share some of the weights to take

advantage of the multitask learning phenomenon.

Using a learned baseline (i.e. subtracting a constant value from the reward

function) also helps reduce the variance without introducing any bias � although

in the early stages of the training, the value estimation is completely random,

once it gets better, it can give a good estimation of the state's value, making

the advantage more estimations reliable.

The largest di�erence, and the thing that makes PPO unique, lies in the

loss function it uses, the so calledsurrogate loss . To recap, a standard PG

loss that uses the advantage values can be expressed as the following:

L(s; a; � ) = A � � (s; a) log � � (ajs) (11)

This, after di�erentiation, gives the same expression as the equation for the

policy gradient, so it can be used as a loss function for automatic di�erentiation

software.
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In PPO, however, the corresponding equation is more complicated:

L(s; a; �; � k) = min

 
� � (ajs)
� � k (ajs)

A � � k (s; a); clip

 
� � (ajs)
� � k (ajs)

; 1 � �; 1 + �

!

A � � k (s; a)

!

(12)

Starting with the di�erence in the signature of this function � the reason for

this is that in the PPO algorithm, each batch of data can be used for several

gradient updates. To counteract that the data becomes o�-distribution after

the �rst update, an importance sampling term � � (ajs)
� � k

(ajs) has to be included, where

� k is the weights before performing any updates with the current batch.

The clip function discourages the policy from going too far from its original

values. A small modi�cation to the weights can have a signi�cant impact on

the policy, and combined with the fact that the loss function relies on data

generated by the �old" policy, this means the policy could easily stray too far

and experience a signi�cant performance decrease, which might turn out not

to be recoverable.

Finally, the min operator between the clipped and unclipped expressions

(which are otherwise identical) means that we only really want to clip really

high values of the loss. If it is low, the gradient ascent algorithm shouldn't

be moving in that direction anyways, so there's no harm in having that part

unclipped.

3.2.2 Advantage estimation

An important improvement to the policy gradient algorithm is using the advan-

tage function as opposed to the raw rewards to optimize the policy. This idea,

stemming from actor-critic algorithms [33] gives the agent a better mechanism

for performing credit assignment.

The core idea is that if the agent is given an estimate of the current state's

overall value, then it can compare the actual reward obtained through taking a

certain action to know if that action was better or worse than expected.

To this end, the network needs some way of estimating the state value,

which can be learned with another neural network, as described in the PPO

algorithm. With this, a common way of estimating the advantage values is by

using the Generalized Advantage Estimation (GAE) algorithm [34].

When thinking about advantage estimation, the question of how to actually

estimate the value of the state given a trajectory. In episodic tasks, it can be

viable to just rollout the entire episode and sum up the discounted rewards to
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go through Monte Carlo estimation:

V̂ (st ) =
X

t0� t


 t0� tRt0 (13)

On the other hand, you can also use the existing value estimate of the

next state with a Temporal Di�erence-based approach, which doesn't require

observing the entire episode, and is better suited for continuing tasks:

V̂ (st ) = Rt + 
 V̂ (st+1 ) (14)

Both of these approaches come with pros and cons. What's more, various

intermediate methods are easy to de�ne, by considering the nextn rewards

and the (n + 1) th value.

GAE introduces a way of interpolating between all of those by introducing

a special parameter� 2 [0; 1]. The GAE advantage estimate can then be

computed as

ÂGAE (
;� )
t =

1X

l=0

(
� ) l � V
t+ l (15)

where� V
t = R(t) + 
V (st+1 ) � V(st ) is the TD error at timestep t.

By adjusting the � parameter, the algorithm can put more or less emphasis

on the value estimation. In the extreme cases,� = 1 reduces to the Monte

Carlo estimate from Equation 13, and� = 0 produces the TD estimate from

Equation 14.

3.2.3 Exploration - Exploitation trade-o�

While training a Reinforcement Learning agent, there appears a dilemma

regarding how it should choose its actions. On one hand, its objective is to

optimize the total reward by exploiting its current knowledge. On the other

hand, it has an instrumental goal of obtaining more knowledge to be able to

ful�ll the aforementioned task more e�ectively, which it can do by the way of

exploration , or taking actions that do not seem optimal at the moment.

The general rule is that in early stages of the training, agents should focus

on exploration to build up their knowledge, and then transition to exploitation

by taking the best action as the training goes on. In some cases, the RL

agent isdeterministic , which means it doesn't have a natural way of sampling

suboptimal actions. Then, a common strategy is called� -greedy in which a
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value � 2 [0; 1] is set (and possibly varied throughout the training), and the

agent takes a random action with probability� , and the optimal action with

probability 1 � � .

In case ofstochastic algorithms, which include policy gradient-based ones,

the policy itself is a probability distribution over all possible actions, so the

actions can be directly sampled from it, and over the course of the training,

the randomness should decrease naturally, if it is bene�cial in that particular

environment (there are, after all, examples in game theory where optimal

strategies are stochastic).

However, even for stochastic policy gradient algorithms, exploration can

be enhanced by adding anentropy bonus . Recall the formulation of the PG

training objective in Equation 9, extended by an additional term proportional

to the entropy of the policy S(� ):

J (� ) = E� � � � R(� ) + �S (� ) (16)

where � 2 R is the entropy bonus coe�cient, and S(� ) is the expected

entropy of the policy � � . In practice, this can be computed from collected

experience by computing the average entropy of distributions� � (s) 2 � A

encountered in the collected trajectories.

3.3 Multiagent Reinforcement Learning

A generalization of Reinforcement Learning is Multiagent Reinforcement Learn-

ing (MARL) where it is possible for several agents to interact with the environ-

ment and, by extension, one another [35]. While it has clear applications in

real-life scenarios where agents have to interact with other agents, including

humans, it also carries many challenges.

The various MARL environments can be divided into three main categories,

for simplicity described on the example of two agentsA1; A2:

� Cooperative � the reward of a state is equal for all agentsRi (s)

� Competitive � one agent's gain is another's loss, withR1(s) + R2(s) =

const, the equivalent of a constant-sum game in Game Theory

� Mixed � anything that doesn't �t in the other two categories
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3.3.1 Non-stationarity and agent modeling

A standard assumption in RL algorithms stemming directly from the Markovian

assumption is that the environment is stationary, meaning that the transition

T(s; a) always yields the same distribution, or in other words, is an actual

function that remains the same throughout the training [10].

In a multiagent setting (Dec-POMDP) observed from the perspective of

a single agent, that is not quite the case. During the course of training, the

second agent's policy changes, and because of that even if the action taken is

the same, the joint action will be di�erent, yielding a di�erent successor state

distribution.

One approach to dealing with this issue is the MultiAgent Deep Deterministic

Policy Gradient (MADDPG) algorithm [ 36] based on Deep Deterministic Policy

Gradient [37], an algorithm combining policy gradient and value-based methods.

Speci�cally, MADDPG uses a centralized critic shared between the agents to

facilitate implicit information exchange and coordination between the agents.

This work explores an alternative approach based on agent modeling. In

principle, given full information about the partner agent and including it in the

state representation, the problem becomes stationary again. However, since a

neural network-based agent can be arbitrarily large, I'm using an intermediate

step where the policy is conditioned on the information about the other agent's

skill level � this will be explained in further detail in Section 4.

3.3.2 Self-play

An approach commonly used especially in competitive environments is self-play,

where the agents are copies of each other. It has been shown to achieve great

success for example in the game of Go with AlphaZero [6]. With self-play, the

agents can develop a natural training curriculum making it possible to learn

advanced and versatile strategies [38]. The core mechanism here is that if the

agent learns a new e�ective tactic, it can immediately start learning a way to

counter it.

This phenomenon, however, does not occur in cooperative environments

� there it is quite possible for the agent to over�t to only cooperating with

itself, making it incapable of cooperating with other, arbitrary agents. To

some extent, this can be mitigated by including old versions of the agent in the

training, which is the approach taken in this work, explained in more detail in
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Section 4.3.

3.3.3 Ad-Hoc Cooperation

In a standard ML context, it is quite simple to de�ne generalization � the

model should learn to perform well on data it hasn't seen before, but that

comes from the same distribution as the training data. It is not as simple

in the case of MARL, where there are di�erent types of generalization to be

considered. Grover et al. [39] introduce a valuable classi�cation in the context

of policy representation learning which has an �external" observer, but similar

types can be applied to agents observing themselves along with their partners

or opponents.

One axis to consider is generalization across tasks, which is relevant also

in single-agent RL. Given a family of MDPs, we want an agent trained on its

subset to perform well on all of them, including ones it hasn't seen yet. In

many cases, this is included in the environment design by randomizing the

starting positions of various objects, like the agent or a goal it has to reach.

Then, speci�cally for MARL, there is the issue of generalization across

agents. Often it is desirable to have an agent capable of performing well with a

wide range of partner agents. So on one hand there isweak generalization

which refers to cooperation between agents which appeared throughout the

training but not with each other. Strong generalization , in turn, corresponds

to acting with a partner that has never been encountered in the training by

the agent.

Finally, this work focuses on a slightly di�erent direction of skill general-

ization � a robust agent should be able to adapt to partners performing either

well, or poorly, coordinating with them or assisting in doing the tasks they are

not doing due to the lower skill level. Standard iterative RL approaches can

easily provide an excellent testbed for this, since early versions of the agents

are usually randomly initialized and can be seen as unskilled, later versions are

skilled, and there's a wide range of intermediate states.

3.4 Meta-learning and mesa-optimization

Meta-learning is a concept tightly connected to generalization, most commonly

used in the context of the aforementioned task generalization. While standard

learning algorithms (whether Machine Learning or speci�cally Reinforcement
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Learning) learn to e�ectively perform a certain task, possibly generalizing across

some parameters of the task, the goal of meta-learning is learning to learn to

solve di�erent tasks, using di�erent, albeit in some way related, environments.

Meta-learning was introduced by Jurgen Schmidhuber in his Master's thesis

[40], and the work that was particularly inspiring here was the Model-Agnostic

Meta-Learning framework [18]. It uses a general algorithm involving a double

training loop � one across di�erent tasks, and another one across the timesteps

of the task. It requires computing second order derivatives (Hessian matrices)

of the loss function, although that can become computationally intractable

with large networks, so a �rst-order approximation was also shown to perform

well.

A related idea is that of mesa-optimization [41] which is considered

primarily in the context of AI safety and value alignment. It comes into play

whenever an outer optimizer (meta-optimizer) is used to create an agent acting

as the inner optimizer (mesa-optimizer). Using meta-learning algorithms carries

the risk of value misalignment, where the two optimizers' rewards di�er from

one another.

In the context of multiagent RL, a natural form of meta-learning is gen-

eralizing across various partner agent � by training with some of the possible

partners, it is desirable for the agent to learn to adapt to a new one e�ciently.

Whenever it uses a recurrent policy (e.g. an LSTM network), the agent's inner

state updates to re�ect its knowledge about the partner agent can also play the

role of a mesa-optimizer, making this issue relevant even with an unchanging

environment.

3.5 Theory of Mind

Theory of Mind [3] is a concept stemming from Cognitive Sciences, describing

how humans (and other animals) build an inner belief state regarding others'

belief states. In human children, for example, theory of mind capabilities have

been shown to develop between the ages of 3 and 5 [42] which constitutes an

important step in their ability to function in a society alongside other people.

A common way of recognizing whether a system (e.g. a child, an animal, or

a computer program) is capable of modeling others is the so called Sally-Anne

Experiment. [43] It involves two children (or, in general, agents): Sally and

Anne, as well as an external observer whose capabilities we're evaluating. The

experiment proceeds as follows:
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1. Sally and Anne are in a room with a basket and a box, Sally has a marble

2. Sally puts the marble in the basket

3. Sally leaves the room

4. Anne removes the marble from the basket and places it in a box next to

the basket

5. Sally returns to the room

A cartoon used to depict the experiment in the original paper can be seen

in Figure 5.

Now, the question to the observer is: where will Sally look for the marble?

The correct answer, obviously, is the basket � this is the last place where she

saw it, and there's no way for her to know that it is been moved. However, a

naive system incapable of reasoning about Sally's beliefs would point to the

box instead, as that's where the marble is actually located, it overwrites Sally's

belief with its own beliefs.

Since it is important for humans, it can also be expected to be a useful ability

for arti�cial agents to possess in order to cooperate with other heterogeneous

agents in a shared environment, which is bound to be necessary in case of

wide-spread RL agents in public life.

Rabinowitz et al. [4] have shown that this is, in fact, possible for data-driven

systems in their Machine Theory of Mind algorithm which observes agents

acting in an environments and predicts their beliefs and intents.

A more applied approach has been taken by Foerster et al. [44] in the

Bayesian Action Decoder, followed up by the Simpli�ed Action Decoder [45].

There, using explicitly updated predictions of the other agents' belief states

has shown a signi�cant improvement in their abilities to cooperate in the game

of Hanabi [1].
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Figure 5: The original cartoon describing the Sally-Anne test [43].
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4 Experiments

This section will detail the experimental procedure used to test the skill modeling

approach, including the speci�c models used, as well as the environments in

which they were trained.

4.1 Environment

The environments used to evaluate this approach are variations of the base

foraging environment, inspired by the Traveling Salesman Problem. They were

designed as to accentuate the properties of cooperation between agents, and in

some cases, making them explicit to enable directly measuring the cooperation

skill.

The environment is a fully observable, fully cooperative (meaning that the

reward is shared by both agents), deterministic, decentralized MDP on a7 � 7

gridworld with two agents, NS subgoals and one �nal goal. Using the notation

from Section 3.1.5, that means we have the object and type sets as follows:

O = f Agent1; Agent2; Subgoal1; : : : ; SubgoalNS ; Goalg

T = f Agent1; Agent2; Subgoal; Goalg

In each timestep, both agents can take one of �ve actions:

A i = f north; south; west; east; stayg

Each of them moves the agent in the respective direction by one grid cell (or

makes it stay in place, for thestay action).

Informally speaking, the agents' goal is to collect each of the subgoals by

stepping on them, and then reaching the �nal goal. More precisely, the �rst

time one of the agents steps on a subgoal, they both receive a �xed reward

and the subgoal is marked as collected. After all subgoals have been collected,

stepping on the �nal goal (by at least one of the agents) also gives a positive

reward and ends the episode. To encourage �nishing the episodes quickly, the

environment also gives a small negative reward at each timestep. A visual

representation of the environment can be seen in Figure 6a.
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(a) Base environment (b) Two goals environment

Figure 6: A visualization of the environment in the a) base and b) two goal
variants. The meaning of icons is as follows: robot � �rst agent, human � second
agent (whose skill level determines the reward), gold key � uncollected subgoal,
empty key � collected subgoal, diamond with gold � the sole �nal goal, or the
goal giving a larger reward with a skilled partner goal, diamond � goal giving a
larger reward with a novice partner. The shading of the goals indicates whether
they are active, i.e. whether all subgoals have been collected.

4.1.1 Two goals variant

This version was designed as a simpli�ed case in which the task of estimating the

other agent's identity is made more explicit. Agents are trained and evaluated

in two con�gurations only: either a trained agent with a copy of itself, called

the expert or skilled partner, or with a randomly initialized novice agent. There

are two distinguishable �nal goalsG1; G2 that give di�erent rewards R1; R2

upon collection, but collecting either of them results in terminating the episode.

This means that the setsO and T now each contain an additional element

corresponding to the second �nal goal and its type.

If the second agent is a trained agent, we haveR1 > R 2, and conversely, if

the second agent is a novice,R2 > R 1. This way, the �rst agent is encouraged

to build up an internal model if its partner's skill level, to choose the �nal goal

appropriately. A depiction of this environment can be seen in Figure 6b.

Although this environment loses some of the nice theoretical properties by

entangling the reward function with the identity of one of the agents (therefore

de facto ceasing to use the Dec-MDP formalism), it serves well as a stepping

stone towards the full system. So while the multiagent cooperation aspect is

not as emphasised, there is a clear focus on agent modelling, allowing to see
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whether the approach used in this work can ful�ll that goal.

4.1.2 Final action variant

Here, the guiding principle is putting an explicit emphasis on the cooperation

mechanism between the agents, by incorporating a second phase inspired by

the game-theoretic concept of coordination using a fully cooperative Assurance

Game [46].

In this game, whose payo� matrix can be seen in Table 1, each playerA0

and A1 has two available actions: cooperationC and non-cooperationN . Both

(C; C) and (N; N ) are Nash Equilibria, however only one of them is Pareto-

optimal. What's more, to realistically model the scenario of cooperating with

partners of various skill levels, unskilled agents are more likely to not cooperate

(N ) rather than cooperate (C).

A0

C N

A1
C 1; 1 0; 0
N 0; 0 0:3; 0:3

Table 1: Payo� matrix of the Assurance Game

To make it consistent with the rest of the environment, the actionC is

represented by the action corresponding to movement north in the gridworld,

and the action N is represented by any other action. This way, a randomly

initialized agent has a 20% chance of cooperating.

Staying in the simpli�ed realm of only two types of agents (expert and

novice) and assuming perfect information about the other agent's identity, the

optimal behavior in the Assurance Game when acting with a skilled partner is,

naturally, the Pareto-optimal joint action (C; C) with the expected reward of1.

With a novice partner, the optimal action can be found by �nding the expected

utility as a function of the probability of cooperating (to consider both pure

and mixed strategies):

U(p) = 0 :2 p + 0:8 � 0:3 (1 � p) = � 0:04 p + 0:24

p� := arg max
p

U(p) = 0 (17)

U(p� ) = 0 :24
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In other words, the optimal action with a partner whose probability of cooper-

ating is 20%is deterministically not cooperating. This way, the joint action

will be (N; N ) 80% of the time, and (N; C) 20% of the time.

The way it is implemented in the environment is that now the game has

two phases. In the �rst phase, the agents have to collect subgoals and head

to the �nal goal as usual. After that, however, instead of ending the episode,

the agents have to choose a single action in the Assurance Game. This way,

they can use the �rst phase to make a judgement about the other's skill level,

and then use that information to choose the correct strategy, extending the

two goal variant with an actual coordination mechanism.

4.2 Models

In order to solve those environments, I tested three types of models, each with

a di�erent way of utilising Theory of Mind parameters (here: the skill level)

visualized in Figure 7.

The �rst model is the baseline that doesn't involve any explicit skill modelling

components. It consists of a relation layer (see Section 2.4) to serve as the

input state embedding, followed by a recurrent LSTM layer, and the heads for

policy and value predictions.

The second model is the main variant investigated in this work, the Skill

Modelling (SM) network. While the model itself doesn't receive any extra

inputs when choosing actions, it receives an extra reward signal, making it

perfect for the centralized training - decentralized execution (CTDE) approach.

An intermediate layer is trained to output its partner's skill level, which is

also fed through a bottleneck layer and concatenated with the relation layer's

output, going into the main policy LSTM.

Finally, the last model is the Ground Truth (GT) model which serves as

an estimate of the best performance attainable by any skill modeling agent.

Since the skill modeling capabilities of the SM model are isolated from the rest

of the network via the bottleneck, the best it can do is output the labels that

it is trained to predict, so feeding that value directly into the policy network

provides an upper bound of its performance.
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Figure 7: A schematic of the models used for the policy and value functions.
(left) Baseline model where no explicit skill level information is used

(middle) Skill Modelling (SM) model where there's a component trained to
predict the skill level

(right) Ground Truth (GT) model where the skill level is directly passed as an
input to the network

4.2.1 Stateless models

Some experiments were also performed on a less powerful, stateless model

architecture, with analogous variants as described above (i.e. baseline, SM and

GT; note that the SM model is then no longer stateless, but its memory is

restricted to modeling the other agent's skill level).

The capabilities of such a model are signi�cantly limited, given that the

only information it receives is the snapshot of the current state, so any inference

of the partner's skill level cannot take into consideration the episode's history.

4.2.2 Separate skill prediction

Another brie�y explored concept is that of a separate skill predictor. This

method approaches the problem from the perspective of a purely supervised

task � given a population of agents, train a model to predict their skill levels

given a sequence of observations gathered throughout the episode. If su�cient

performance is reached, the model's output can then in principle serve as an

input into a GT agent, ridding it of its dependency on external knowledge for

the policy function.
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4.3 Training methods

The policy optimization process is based on the idea of self-play, where the

agent is partnered either with a copy or an old version of itself. The general

training procedure is described in Algorithm 4:

Algorithm 4 The general training procedure

1: Require: T : number of iterations
2: Require: Ss : number of steps to collect with a copy
3: Require: No : number of partner agents to sample
4: Require: So : number of steps to collect with each sampled partner
5: for t 2 [0; T] do
6: Collect a batch Bs containing at leastNs steps with agents(A t ; A t )
7: for i 2 [0; No] do
8: Sample a past agentAn 2 f A0; : : : ; Atg
9: Collect a batch B i

o with at least No steps with agents(A t ; An )

10: Concatenate batchesf B i
ogi into Bo

11: Concatenate batchesBs and Bo into B t

12: Update the agentA t using the data batchB t

13: return A t

Collecting a batch of at leastN steps works in the way that episodes are

rolled out until N steps are collected, and then the last episode is allowed to

�nish, usually resulting in slightly more than N steps. This is not a problem

as the batch size doesn't need to be constant, but allows for computing all

advantages and rewards-to-go using Monte Carlo estimation.

Speci�cally, three methods of partner sampling were considered:

� Binary

� Iteration-based

� Skill-based

In the binary method, it is not so much sampling as it is deterministic

partner selection. Each sampled agent is the �rst, randomly initialized agent

A0. This is a relatively simple setting where the skill level can be represented

as a binary value0 or 1. It is also the only possible method for the Two Goals

environment, since its reward structure depends on the partner agent's identity

and is inherently binary.

Iteration-based sampling is the naive way of choosing from the entire range

of agents (as opposed to just the �rst one, as in the binary version). In each
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iteration t, you uniformly sample an iterationn 2 [0; t] and choose its associated

agent An . While reasonable at �rst glance, this approach has a serious �aw

when we consider the way that skill level usually progresses during the training

- importantly, that at some point the training curve �attens out as the agents

converge. This means that the skill level of sampled agents will over time lean

more and more heavily towards higher values, defeating the original purpose of

sampling, which is having the agent experience a wide range of partner agents.

Skill-based sampling is a way of alleviating that issue by drawing inspiration

from the inverse transform sampling. Instead of sampling an iteration directly,

a skill level is sampled. The details of skill representation will be laid out in

the next section, but what's important is that the skill level is represented as a

numberR 2 R, and that we have access to the skill levels of all past agentsf Rtgt .

Therefore, a skill value ~R is sampled from the range[min f Rtg; maxf Rtg], and

then an agentAn is chosen in a way that minimizesjRn � ~Rj. This way, a

consistent representation of various skill levels is ensured, in return causing

newer near-converged agents to be sampled very rarely.

4.4 Skill representation

An important thing to consider is what is actually meant by �skill level" of an

agent. Intuitively, it should correspond to the expected episode return obtained

by the agent, but the complication is that since the environment is inherently

multiagent, you need two agents to actually roll out an episode.

In case of the binary sampling method, this issue is solved easily by assigning

the skill level value0 to the randomly initialized agent and1 to its newest version.

The interpretation of those values di�ers at each iteration, as1 corresponds

to iteration 10 at t = 10, and 100 at t = 100, but in the later stages of the

training, when the policy starts to converge and stabilize, this should not be a

signi�cant problem.

When sampling from the entire range of past agents, it becomes necessary

to represent the skill level with better granularity. There are two issues to

consider here. First of all, sometimes the agents need to cooperate with an

agent of a skill level higher than their own. This means that the skill level input

would be larger than anything they've experienced throughout the training,

which could have an unpredictable impact on their policy.

The second issue is a bit more subtle - when collecting a batch of data, two

copies of the most recent agent are put in the environment together. For a
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GT model to work in such a setting, it needs to receive a measure of the skill

level when choosing the actions, but it cannot know the skill level value before

rolling out some episodes and measuring their returns. This leads to a �chicken

and egg� situation where it is impossible for an agent to know its own skill

level.

To mitigate this issue, a normalization procedure is used, derived as an

extension of the binary skill level labels. Given a history of skill levelsf Rtgt ,

at iteration t0, the agent's own skill level is set to be equal to1, and the skill

level of a sampled agent is normalized linearly so thatmint f Rtg maps to 0 and

maxt f Rtg maps to 1. This way, the skill level value observed by any agent is

bounded in [0; 1]. Those same values can also be used for SM agents as the

value their skill modeling components are trying to predict.

4.5 Joint-optimal planning

In order to estimate the duration (and, by extension, the reward) of the optimal

strategy in an environment, I used a planner to search for the best joint strategy

assuming perfect cooperation and coordination between the agents. Since the

core of the task is similar to the multiagent Traveling Salesman Problem which

is known to be NP-complete [47], the possibilities of developing an e�cient

algorithm are limited. However, the number of subgoals considered in the

experiments is generally quite low, up to 4, which makes it viable to be solved

using a brute-force approach.

To make the problem tractable, I simpli�ed the state space so that each

environment is represented by a weighted complete graph in which the nodes

are positions of subgoals, goals and the starting positions of agents, and edges

represent the distances in the gridworld. Agent actions are then interpreted as

going from one position to another, e.g. from a subgoal to a �nal goal.

In the base environment case, to �nish an episode, each subgoal has to be

visited, and afterwards the goal. From this a few observations can be made:

� There's no need to visit a subgoal twice

� There's no need to do anything after visiting the �nal goal

� Each goal has to be visited by at least one agent, and there's no need for

another agent to visit it as well

� The last action for one of the agent needs to be going to the �nal goal
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Starting with a set of strategies encompassing all possible permutations of

visiting the subgoals for both agents (for a total of(n!)2 joint strategies wheren

is the number of subgoals), I applied the aforementioned constraints removing

all redundant strategies, reducing the size of the search space to(n + 1)! . Since

(4 + 1)! = 120, it is su�ciently fast to just evaluate each of those joint strategies

and choose the one which results in the episode �nishing the soonest.

As previously mentioned, this assumes perfect coordination, which might

not be possible in reality, however it provides an upper bound on agents'

performance in an environment with speci�c object locations. Through a Monte

Carlo simulation it is also possible to estimate the optimal mean reward across

all possible environments, which yields an approximate upper bound on the

performance when averaged across many sampled instances.
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4.6 Implementation

In order to ensure proper �exibility and reusability, the code was structured in

a way that separated out the di�erent parts of the RL logic, in order to obtain

a set of abstractions which can be combined together in any variations. This

section will provide an overview of the implementation of the program, as well

as the abstractions and how they �t together to create the full training and

evaluation pipeline.

4.6.1 Tools

The primary tool used for this project was the Python [48] programming

language, speci�cally Python 3.7. Python is a general purpose language,

supporting both object-oriented and functional programming paradigms. Even

though it is relatively slow, its simplicity and the fact that it can use libraries

written in other, faster languages to handle heavier computations, caused it to

become the de facto standard in machine learning applications.

Within Python, the two main frameworks I used for e�cient computation

were SciPy (with a particular focus on NumPy) [49] and PyTorch [50]. The �rst

was used for general purpose data manipulation using its ndarray data structure,

while the latter was used speci�cally for the deep learning parts: building the

neural networks, computing the gradients and updating the weights.

For visualization purposes, I used TensorBoard [51] for tracking the training

progress in real time, and Matplotlib [52] supported by Seaborn for all other

plots and evaluations after the training.

In order to build the experimental environments, I used the Pycolab library

[53]. It provides a set of components useful in building gridworld-based MDPs

that can be used for RL research. The environments were built adhering to

the interface introduced by OpenAI Gym [54] standardizing the methods an

environment should implement for easy use with RL algorithm.

4.6.2 Abstractions

Since the code was structured in a mostly object-oriented way, each of the

following abstractions was implemented as a class, possibly holding some of

the other abstractions as �elds or inheriting from them.

Firstly, there's the BaseModel abstract class inheriting from the PyTorch

Module class, which is later used to create speci�c models (e.g. MLPModel or
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RelationModel). Its main feature is themodel.forward(...) method which takes

the following arguments: the network input, optionally the previous hidden

state (for recurrent models), and optionally skill-related information. It has

three outputs: an action distribution, the next hidden state, and a dictionary

with extra outputs like the value or skill estimation. This interface is common

for all models, even though some, e.g. a simple MLP model, ignore the optional

inputs and return trivial skill estimates.

The next important abstraction is an Agent which is responsible for connect-

ing a BaseModel object with a Gym-like environment by providing methods

like agent.compute_single_action(...) for choosing an action to take, and

agent.evaluate_actions (...) to compute quantities necessary for gradient-based

optimization.

To actually use these agents, I created aCollector class holding two Agent

instances and the environment in question. Its main role is providing the

collector .collect_data (...) method rolling out a certain number of steps or

episodes in the environment, with the chosen agents.

To actually update an agent, data collected in a Collector is used in a

PPOptimizer object which holds an Adam optimizer and provides theppo.train_on_data(...)

method, using said optimizer to modify the agents' weights.

Finally, all of this is combined in aTrainer object that takes care of the

general training logic: it holds the agents, the environment, a collector and

an optimizer, and provides the methodtrainer . train (...) which iterates a

speci�ed number of time, collecting a batch of data and using it to update the

agents.

4.6.3 Interactive mode

To simplify experimenting and evaluating various agents, I developed a web

app using Flask and TypeScript as a front-end for the environment � the user

can run a local web server with a speci�ed environment and model to be used

as one of the agents, and then control the other agent with their keyboard. A

picture of the interface can be seen in Figure 8.




