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Abstract

The purpose of this work is analyzing the temperature measurements from the Ul-
traFast Thermometer 2.0 (UFT-2) during the campaign ACORES 2017. Several types of
anomalies in the readings were investigated and labelled using an app written for that
purpose. Several machine learning algorithms were tested on the task of automatically
detecting said anomalies, using the data from UFT-2 and readings from other devices,
including the liquid water content and wind speed.
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Chapter 1

Introduction

Artificial intelligence techniques have seen a wide range of applications throughout the last
decade, from image classification and natural language processing, to anomaly detection
and image generation, with neural networks being exceptionally versatile with the plethora
of various architectures like Convolutional Neural Networks[11] particularly effective for
processing image data, and Recurrent Neural Networks[12] - for temporal data.

ACORES, which stands for Azores stratoCumulus measurements Of Radiation, turbu-
lEnce and aeroSols, is a measurement campaign carried out around the Azores Islands on
1-23 July 2017, with the goal of investigating the structure of certain clouds.

UltraFast Thermometer 2.0 (UFT-2) is an instrument designed to measure airborne
temperature at high resolution, both in clouds and outside of them. Its main components
are two thin, resistive tungsten wires hidden behind a steel rod to shield them from water
droplets.[15]

This work aims to explore the possibility of applying machine learning algorithms to
detecting anomalies in the temperature measurements from UFT-2 during the campaign
ACORES 2017. The basic idea is splitting the temperature series into shorter windows,
and training a supervised learning algorithm to detect whether or not there is any anomaly
in a given window.
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Chapter 2

Measurements

The main purpose of the ACORES campaign was twofold – to investigate the small-
scale structure of the stratocumulus top, with special consideration of the entrainment
interface layer (EIL), and to analyze the aerosol and CCN budget in the relatively pri-
stine marine boundary layer.[15] During the campaign, a helicopter was flown around the
archipelago of Azores with two external instrumental platforms suspended underneath:
SMART-HELIOS[6] maintained by the University of Leipzig and ACTOS[18] maintained
by the Leibniz Institute for Tropospheric Research.

During the campaign, 18 flight were carried out, out of which 17 employed the UFT-
2, each flight being up to 2 hours long; however the thermometer skipped three flights
between the sensing wire breaking and being replaced, giving a total of 14 flights with
data from UFT-2[15].

2.1. ACTOS

The Airborne Cloud Turbulence Observation System, or ACTOS in short, is particularly
important for this work since various sensors from it were used for the analysis of the
UFT-2 data. It was suspended on a 150 m long rope under the helicopter, with two UFT-
2 sensors mounted on it, 2 centimeters away from each other vertically, as seen in Figure
2.1.

The platform is fitted with the following sensors:[18]

• Ultrasonic anemometer/thermometer to measure the 3D wind vector and the virtual
air temperature, sampled at 100 Hz

• A combination of the dGPS and inertial sensors to measure the attitude angles,
angular rates, position and velocity, sampled at 10 Hz (optionally 100 Hz)

• A modified version of the UltraFast Thermometer (UFT)

• A Lyman-α absorption hygrometer to measure humidity fluctuations
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• PT-100 resistance-wire thermometers as a reference for the UFT-2 and a capacitive
hygrometer to measure air temperature and relative humidity as a reference for
Lyman-α sampled at 1 Hz.

• Two condensation particle counters (CPCs) to measure the number concentration
of interstitial aerosol particles

• Particle Value Monitor PVM-100A to measure the liquid water content (LWC)

• A modified version of the Fast Forward Scattering Spectrometer Probe (M-Fast-
FSSP) to measure cloud droplets

2.2. UFT-2

The design of the UltraFast Thermometer 2.0 is based on its predecessor, UltraFast Ther-
mometer (UFT)[5]. The most notable differences are a much smaller size of the instrument,
and a lack of moving parts. Its main components are two ultra-thin (1.25 µm diameter)
tungsten wires spanned across the arms of a trident, shielded by a 0.25 mm thick steel rod
which serves as protection against cloud droplets and ice crystals, as seen in Figure 2.1.

Its maximum frequency of response reaches 10 kHz in flight conditions, however in
this campaign it was oversampled and operated at 20 kHz (with the effective sampling
frequency dependent on variables such as the velocity of the platform), which was further
downsampled to 100 Hz, matching the sampling frequency of several ACTOS sensors.

The raw output from the UFT-2 consists of two time-indexed voltage vectors (one for
each wire), which is then linearly calibrated with reference thermometers and converted
to temperatures.

Figure 2.1: Photo of the amplifier (left) and of the temperature sensors (right) used in the
UFT-2 during the campaign[15]
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2.3. Data overview
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Figure 2.2: (up) The temperature from the lower UFT-2 (the upper one would be indi-
stinguishable at this scale), and the liquid water content throughout the flight.
(down) The altitude of the ACTOS platform, as measured by the mounted GPS.

In Figure 2.2 you can see the temperature and liquid water content measured during
Flight 16. The helicopter takes off at approximately 900 seconds (the noisy readings before
that moment are due to the fact that the platform was on the ground, affected by distur-
bances related to helicopter’s operations), enters a cloud and stops climbing at the height
of about a kilometer. At around 2500 seconds it starts dipping in and out of the cloud
several times, until 3700 seconds when it climbs even higher. At 4600 seconds it starts
descending and probes the cloud again, until it descends even further between 5500 and
6000 seconds. At 6600 seconds it ascends once again, and at at 7500 seconds it descends
and proceeds to finish the flight.
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2.4. Anomalies

A closer inspection of the UFT-2 data reveals several distinctive patterns, or anomalies, in
the measurements. These anomalies were divided into three categories: jumps, noises and
hills. The jumps are characterized by a relatively large change in the temperature value
over very few datapoints (up to 3-5). The jump can occur on either only one thermometer
or on both, and the value can either increase or decrease. In some cases, the values after
the jump go back to their previous range in a very short time, as seen in Figure 2.3. In
other cases, the values after the jump stay within the new range, as seen in Figure 2.4.

The second category of anomalies are areas with an increased amplitude of noise, again,
either on one or both thermometers. An example can be seen in Figure 2.5, from 1396
seconds onward on the blue line. The last category are areas resembling hills (possibly
upside down), often coupled with increased noise, as seen in Figure 2.6.

Figure 2.3: An example of an anomalous jump in the readings.

Figure 2.4: An example of an anomalous jump in the readings.
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Figure 2.5: An example of increased noise in the readings.

Figure 2.6: An example of an anomalous hill in the readings.

In Figure 2.7 you can see the density of jumps during Flight 16, with the value of each
bar in the histogram corresponding to the number of anomalies in that time window. The
locations of the jumps have been spotted via visual inspection and marked with the use
of a Node.js application written for that purpose.

The total number of jumps spotted is 980 in the lower thermometer, and 1186 in the
lower thermometer.
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Figure 2.7: (up) Temperature from the upper thermometer, along with the density of
anomalies detected on it.
(mid) Liquid water content (LWC) plotted over time
(down) Temperature from the lower thermometer, along with the density of anomalies
detected on it.

11



Chapter 3

Anomaly detection

The main purpose of this work was finding a way of automatically detecting anomalies
(specifically, jumps), given the temperature record and other measurements obtained from
the ACTOS platform.

3.1. General problem formulation

Let’s define Fi ∈ Rnf×Li to be the flight matrix describing the i-th flight, where Li is the
length of that flight, and nf is the number of measurements (or features) selected from the
ACTOS platform (these will include, for example the temperatures on both thermometers
and LWC). Let’s also define

F := {Fi}i∈Λ

where Λ is a set of indices. In other words, F ⊂ Rnf×Li is the set of all flight matrices
(since, obviously, not all matrices could correspond to an actual, physical flight).

Here’s an example of a flight matrix with nf = 5, with the following features: tempe-
ratures at the lower and the upper UFT-2, and the three coordinates of the velocity of the
wind measured by the ACTOS platform.

Fi =


T low0 T low1 T low2 . . . T lowLi−1
T up0 T up1 T up2 . . . T upLi−1
v1

0 v1
1 v1

2 . . . v1
Li−1

v2
0 v2

1 v2
2 . . . v2

Li−1
v3

0 v3
1 v3

2 . . . v3
Li−1


Let’s also define li ∈ [0, 1]2×Li to be the label matrix of the i-th flight, with the first

and the second row describing the occurrence of anomalies in the lower and the upper
UFT-2 measurement, at any given timestep (indexed by the columns of the label matrix).

1The reason why the labels take continuous instead of binary values is two-fold. Firstly, machine learning
algorithms generally operate on probability distributions so this formulation will make everything work
nicely. Furthermore, due to the purely empirical and unclear definition of a jump, it might not be so clear
in some cases whether a specific pattern is one.
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Specifically, (li)n,t ∈ [0, 1] is the probability1 that on the t-th timestep there occurred an
anomaly on the n-th thermometer.

Then the problem can be rephrased as finding an approximation of the mapping

f : Rnf×Li ⊃ F −→ [0, 1]2×Li ⊂ R2×Li

which fulfills the condition that ∀i∈Λ : f(Fi) = li.
Since both the argument and the output of f could be flattened into vectors, then in

principle, given enough flight and label matrices of a given length, a simple neural network
could be trained to approximate f arbitrarily well for each Li.[8] This will be described
in further detail in Chapter 4.

In practice, however, this approach doesn’t work due to the curse of dimensionality[9]2

combined with the heavily limited dataset, with only several flights available, and even
fewer of them labelled.

Another obstacle is the fact that a feedforward neural network can only take fixed-
length inputs, facilitating the need for multiple networks, one for every value of Li.3

Therefore, some simplifying assumptions need to be made:

• Limited importance of the past and the future – measurements that are far away
(temporally) from a specific timestep aren’t important for the prediction at that
timestep

• Translational invariance – it’s not important whether the considered timestep is at
the beginning, at the end, or somewhere in the middle of the flight

With these premises in mind, it becomes justified to pose a slightly different problem,
which serves as a proxy to solve the original one.

3.2. Window classification

Using the definitions from Section 3.1, let’s further define the set of all windows in Flight
i, its subsets of fixed-length windows, and the set of fixed-length windows from all flights:

Wi :=
⋃

0¬j¬k¬Li

{(Fi):,j:k}

W l
i := {w ∈Wi|k − j = l} ⊂ Rnf×l

W l :=
⋃
i∈Λ

W l
i ⊂ Rnf×l

2The amount of data needed to train a classifier grows exponentially with the dimensionality of the
data. In this case L tends to be quite large, going well into hundreds of thousands of values.
3This specific issue could be remedied with the use of recurrent models, such as Long Short-Term

Memory networks[7]
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In other words, a window w ∈ W l
i consists of l consecutive columns from Fi. Each of

these windows has a label vector lw ∈ [0, 1]× [0, 1] associated with it, indicating whether
or not there’s an anomaly on the thermometers:

w = (Fi):,j:k =


T lowj T lowj+1 . . . T lowk−1
T upj T upj+1 . . . T upk−1
v1
j v1

j+1 . . . v1
k−1

v2
j v2

j+1 . . . v2
k−1

v3
j v3

j+1 . . . v3
k−1


lw := max

j<n<k−1
{(li):,n} ∈ [0, 1]× [0, 1]

The modified anomaly detection problem can be described as finding an approximation
of the mapping

fl : Rnf×l ⊃W l −→ [0, 1]× [0, 1]

such that ∀w∈W l : fl(w) = lw.
The window length l needs to be chosen based on manual inspection – it needs to be

large enough to store information about the entire jump and its immediate surroundings,
but at the same time small enough to avoid the curse of dimensionality mentioned before.

After developing a model to solve the window classification problem, it could be applied
to every window in the flight to perform a task as described in Section 3.1.

3.2.1. Single thermometer window classification

To further simplify the task at hand, a slight modification can be made to the problem
described above. Specifically, instead of predicting the label lw ∈ [0, 1] × [0, 1], one could
predict only one of these labels, with everything else remaining the same. So, we want to
approximate the functions:

f jl : W l −→ [0, 1]

such that ∀w∈W l : f jl (w) = (lw)j for j ∈ {1, 2}.
Having developed models approximating those two functions, those can be ran together

to get a model as described in Section 3.2.
The advantage of this modified model is its simplicity – it’s just binary classification

of a fixed-sized input, which is a well studied topic with plenty of available algorithms and
evaluation metrics. It’s also easier to construct a well designed dataset (as will be shown in
Section 3.3), since only some anomalies coincide on both thermometers, and other times
they’re in various distances from one another.

On the other hand, training a single model to predict both labels generally has the
benefit of sharing parameters between the predictions on both thermometers, which could
help with generalization.

Going forward, the single thermometer window classification problem will be conside-
red.
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3.3. Data generation

The current task is essentially a standard machine learning problem of performing binary
classification on a fixed-size real-valued vector (here nf l-dimensional). One thing that is
missing is the specific dataset obtained from a flight. The naive method would be taking
all slices of Fi with length l, yielding a total of Li − l + 1 datapoints, with a very high
overlap between windows and a vast majority of them having the label 0. What’s more, the
amount of generated data would be very large, which, combined with the class imbalance,
would call for subsampling it. Instead, alternative algorithms were used in order to limit
the overlap and the class imbalance.

Algorithm 1 Generating positive datapoints

1: feature list← empty list
2: Require: features : flight matrix nf × Li
3: Require: labels : label matrix 2× Li
4: Require: l : window size
5: for j in 0..(Li − l + 1) do
6: window ← labels[j : j + l]
7: left← bj + 1

4 lc
8: center ← bj + 2

4 lc
9: right← bj + 3

4 lc
10: if labels[left] == 1 or labels[center] == 1 or labels[right] == 1 then
11: feature list.push(features[j : j + l])

12: return feature list

To generate the positive datapoints, an iteration is performed over all fixed-size win-
dows of the flight. A given window is included in the data if there’s an anomaly (i.e. a
positive label) in 1

4 , 2
4 or 3

4 of its length, as described in Algorithm 1. In this case, l is
assumed to be divisible by 4, but otherwise, the nearest point can be used.

To generate the negative datapoints, a safe zone around the window is introduced to
ensure that no anomalies are caught in the window and to eliminate the overlap. Let’s
define s > l ∈ N to be the size of the safe zone. Once again, iteration is performed over
all fixed-size windows, but the window has to fulfill two conditions to be included in the
dataset:

• No anomalies are inside the window or within s
2 points from its middle

• It doesn’t overlap with any other windows included

Algorithm 2 describes the specific process to achieve that.
The values of l (window length) and s (safe zone length) that turned out to work well

and were used for the model are, respectively, 20 and 50.
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Algorithm 2 Generating negative datapoints

1: feature list← empty list
2: Require: features : flight matrix nf × Li
3: Require: labels : copy of the label matrix 2× Li
4: Require: l : window size
5: Require: s : safe zone size
6: pad← b s−l2 c
7: for j in 0..(Li − l + 1) do
8: window ← labels[j : j + l]
9: if max(window) == 0 then

10: feature list.push(features[j + pad : j + l − pad])
11: labels[j : j + s]← 1

12: return feature list

The next chapter will provide a theoretical description of the machine learning methods
and algorithms used to solve the problem stated above, and a general framework for solving
such problems, including the evaluation of a solution (model).
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Chapter 4

Machine learning methods

The most general supervised learning (which is the branch of machine learning which can
be of the most use in this work) problem can be expressed as finding an approximation of
a certain probability distribution p(y|x), based on a finite set of (xi, yi) datapoints, where
xi is the i-th feature vector and yi is its label.

The feature vectors can be elements of a vector space Rn, but some approaches allow
for one model to be used with feature vectors of various dimensions.[11][12] In general, xi
can be members of a problem-specific set of vectors.

The labels can take either continuous or discrete values. In the first case, the task is
called regression, and in the latter – classification. A special case of classification is
binary classification, where the labels take one of two possible values, yi ∈ {0, 1}. In
multiclass classification the set of possible labels is finite, with a cardinality larger than
2, and in multilabel classification, the labels are binary vectors, i.e. yi ∈ {0, 1}n for
some n ∈ N.

Some examples include:

• For detecting the presence of a cat in a 32 × 32 RGB photo, the features are real
vectors xi ∈ R32×32×3 ∼= R3072 and the labels are binary values yi ∈ {0, 1}, making
it a binary classification problem.

• For time-series prediction, the features can be real-valued sequences of varying
length, and the labels are real values corresponding to the values at the next ti-
mestep, yi ∈ R

• For text summarization[1] (shortening a long text to a shorter one, conveying as
much of the original information as possible), the features and the labels could be
sequences of real vectors corresponding to word embeddings[13], (xi)t ∈ Re, where
e ∈ N is the size of the embeddings.

A machine learning model is an algorithm that can learn from a dataset consisting of
(xi, yi) pairs, and make correct label predictions about new feature vectors from the same
distribution.
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A model can be either parametric or nonparametric. A parametric model can be
described as a mapping

f : X ×Θ −→ Y

where X and Y are respectively the sets of feature vectors and labels, and Θ ⊂ Rp
is the set of parameter vectors. Parameter vectors are essentially vectors of real numbers,
with a fixed dimension p. The standard notation of the model’s prediction is

ŷi = f(xi|θ)

Nonparametric models are all the models that can’t be described by a set of parameters
– they can, for example, use the entire dataset they’re trained with, directly.

One more necessary concept is a loss function (also known as the cost function
or objective function) that measures the performance of a model and makes learning
possible for parametric models. The motivating idea of a loss function is that it should
measure how distant the prediction is from the actual label on a given datapoint.

Formally, a loss function can be defined as

L : Ŷ × Y −→ R­0

where Ŷ is the prediction space, i.e. the set of all predictions that can be made by the
considered model. This isn’t necessarily the same as the set of possible labels – in fact, in
general it’s not even true that Y ⊂ Ŷ or Ŷ ⊂ Y . In the case of binary classification, for
example, we often have Y = {0, 1}, and Ŷ = (0, 1), so Y ∩ Ŷ = ∅. There is however, the
obvious mapping

L(ŷ) =

{
0, ŷ < 0.5
1, ŷ ­ 0.5

that converts predictions to labels for binary classification. Similar mappings can be
defined for other prediction spaces.

The most commonly used loss function for binary classification is the binary crossen-
tropy, also known as log-loss, defined as:

L(ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ)

When dealing with a parametric model f , the machine learning task can be defined as
finding θ∗ defined as follows

θ∗ = argmin
θ

∑
i

L(f(xi|θ), yi)

This turns out to be a well-studied problem of function optimization that can be
solved1 by methods like gradient descent.[17]

1Assuming that L(f(xi|θ), yi) is differentiable almost everywhere with respect to θ
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4.1. Feedforward neural networks

Neural networks are parametric models known for their flexibility when it comes to the
number of existing architectures, which is why they were chosen to be the most explored
models for the purpose of anomaly detection in UFT-2 data.

The most basic neural model is a called a feedforward neural network. In essence, it’s
just a mapping Rn −→ Rm for some fixed n,m ∈ N, described by a set of parameters, also
known as weights.

A deep feedforward neural network can be described as a number of consecutive layers.
Each layer consists of a linear transformation and a translation, followed by a nonlinear
activation function.2

Let’s define gl ∈ R −→ R, to be the activation function on the l-th layer, nl ∈ N –
the layer’s width, W l ∈ Rnl×nl−1 – its weight matrix, and bl ∈ Rnl – its bias vector.
Let’s also define L ∈ N to be the total number of layers in the network, excluding the first
(input) layer (so there’s a total of L+ 1 weight matrices) – these are called the network’s
hidden layers. The neural network is a mapping f : Rn0 −→ RnL defined by the following
equations:

f(x) = aL

al = gl(W lal−1 + bl), 0 < l ¬ L
a0 = x

The al vectors are sometimes called activations.
Assuming the activation and loss functions are differentiable almost everywhere, the

backpropagation[4] algorithm can be used to compute the exact derivative of the loss
function with respect to the weights and biases, making it possible to minimize the loss
with the use of gradient descent.

Some of the most commonly used activation functions include the Rectified Linear
Unit (ReLU), sigmoid (σ) and tanh defined as follows:

ReLU(z) = max(0, z)

σ(z) =
1

1 + e−z

tanh(z) =
ez − e−z

ez + e−z

4.2. Gradient descent

Even though the gradient descent algorithm isn’t used in this work (and in general) di-
rectly, it’s a basic version and an inspiration of the most commonly used optimization

2An activation function can be any function R −→ R that is applied to a vector pointwise. There are
theoretical reasons[8] for the activation function to be a nonlinear, bounded and monotonically-increasing
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Algorithm 3 Gradient descent

1: Require: α : learning rate, a real number
2: Require: f(θ) : the function to be optimized
3: Require: θ0 : Initial parameter vector
4: t← 0
5: while θt not converged do
6: t← t+ 1
7: gt ← ∇θf(θt−1)
8: θt ← θt−1 − α · gt
9: return θt

algorithms, including the Adam algorithm described in Section 4.2.3.
The purpose of gradient descent is straightforward – finding the global minimum3 of a

function, given the possibility of evaluating its value and its gradient at any given point.
This is achieved by selecting a random initial value and making consecutive steps in the
direction opposite to the gradient at the current argument. This process is described in
Algorithm 3.

4.2.1. Validation split

In order to estimate a model’s performance, a necessary step is setting some of the data
aside during the training. In that stage, the gradient estimate gt is computed based on the
so called training set, while the remaining validation set is used to compute the loss
value that can be interpreted as a measure of the model’s quality. This is done to ensure
that the model is actually able to generalize to previously unseen (potentially unlabelled)
datapoints.

Various train-validation splits are used depending on the problem and the size of the
data. It’s good for the validation set to be as large as possible so that it can give an accurate
estimate of the model’s performance. On the other hand, more data makes it possible for
the model to generalize better to unseen examples and reduces the risk of overfitting. In
very large datasets it’s common for the validation set to consist of 1% or less of the data.
However in the case of smaller datasets, including this work, a 10% validation set is often
used.

4.2.2. Stochastic Gradient Descent

This important variant of gradient descent is related to the issue of computing the gradient
estimate gt. By default, the entire training set is used for that purpose, which is called
batch gradient descent. In stochastic or mini-batch gradient descent, only a subset
of a fixed size is used during each step. This is usually done by randomly choosing (without

continuous function, but in practice, non-bounded functions such as the rectified linear unit[14] (ReLU)
are used commonly.
3In practice, for highly non-convex functions, a local minimum with a low enough value may suffice.
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replacement) a fixed number of datapoints and repeating that process until all of them
have been used exactly once. This constitutes a single epoch, and corresponds to a single
cycle of the while loop described in Algorithm 3. This is repeated until convergence.

The advantage of such an approach is the possibility of lower memory requirements,
especially in the case of very large datasets. It can also speed up the training process, since
several steps of gradient descent can be taken in the time that would be required to take
a single step with batch gradient descent. On the other hand, each step is made based on
a noisy estimate of the gradient, which could be detrimental to the speed of the training.
In practice, however, it turns out to have a positive impact (and is sometimes necessary
due to the memory restrictions).

4.2.3. Adam

Algorithm 4 Adam optimization algorithm. Good default settings are α = 0.001, β1 =
0.9, β2 = 0.999, ε = 10−8. All operations on vectors are element-wise, and βt1, βt2 denote
β1 and β2 to the power t.

1: Require: α : stepsize
2: Require: β1, β2 ∈ [0, 1) : Exponential decay rates for the moment estimates
3: Require: f(θ) : Function to be optimized
4: Require: θ0 : Initial parameter vector
5: m0 ← 0
6: v0 ← 0
7: t← 0
8: while θt not converged do
9: t← t+ 1

10: gt ← ∇θf(θt−1)
11: mt ← β1 ·mt−1 + (1− β1) · gt
12: vt ← β2 · vt−1 + (1− β2) · g2

t

13: m̂t ← mt\(1− βt1)
14: v̂t ← vt\(1− βt2)
15: θt ← θt−1 − α · m̂t\(

√
v̂t + ε)

16: return θt

The Adam algorithm[10] is a variant of gradient descent with an adaptive learning
rate, widely used in training neural networks. It has proven to yield better results than
other gradient-based optimization methods, so it was extensively used in this work to
train various types of neural networks. The algorithm involves computing an exponentially
weighted moving average of the gradient gt and its square g2

t = gt � gt (with � being the
Hadamard product of matrices), and determining θt+1 based on those. By default it’s used
in the mini-batch variety, analogous to Stochastic Gradient Descent described in Section
4.2.2.
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4.2.4. Convergence

The idea of convergence is important in the context of gradient-based learning and is used
as somewhat of an umbrella term for various methods of determining how many steps of
gradient descent (or another algorithm based on it, like Adam) should be made. Some of
the noteworthy approaches include:

• Early stopping, which is also a method of regularization. During training, you keep
track of the value of the loss function on the validation set, and stop the training
when it starts increasing more than a predefined margin.

• Manual stopping, which can serve a similar purpose as early stopping, but is
controlled by a human monitoring the loss values in real time

• Ending the training when the value of the loss function stops decreasing (i.e. actual
convergence)

• Ending the training after a set number of epochs

4.3. Convolutional neural networks

Convolutional neural networks[11], or ConvNets in short, are a type of neural models used
most commonly with image-like data, but can be used whenever translational invariance
of the model is desired, including time series. For example, when detecting anomalies in
a time series it doesn’t make a difference whether the anomaly occurs in the beginning or
the end of the window, which could be helpful in training the model – it doesn’t have to
consider solutions that don’t have this symmetry.

In order to do that, a slightly different representation of the data has to be considered.
In the 1D case (time series), which is the most relevant to this work, a single datapoint
would be (xj , yj), where xj ∈ RL×n. Mathematically, the simplest way to describe a
convolutional layer is through an actual discrete convolution.[4]

A convolutional layer between layers l and l + 1 is a mapping RLl×nl −→ RLl+1×nl+1
that is described by a kernel serving as the weights of the layer. The kernel consists of
nl+1 filters, and each filter is simply a matrix wlk ∈ Rsl×nl , where k is the index of the
filter and sl is the kernel size (a positive integer). Each filter is then convolved with the
input feature matrix, producing a matrix alk ∈ RLl+1×1. The outputs from the convolutions
with each filter are then concatenated, yielding an activation matrix al+1 ∈ RLl+1×nl+1 .
It’s worth noting that due to different options of handling edge cases, it’s possible that
Ll+1 < Ll. This issue is known as padding, and two approaches are dominant:

• Same padding, where the feature matrix is padded with zeros so that Ll+1 = Ll

• Valid padding, where there is no padding, which results in Ll+1 = Ll − (sl − 1)

Due to its construction, a convolutional layer by itself only captures local information,
i.e. it cannot learn any relations between distant timesteps. While this may be a limitation,
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it greatly reduces the number of parameters used in a single layer, and creates a preference
for models that focus on local information, which can be desired in some applications.

4.4. Recurrent neural networks

Recurrent models form another class of extensions of the standard neural network. They
are applicable whenever the input features have a temporal structure, like a (possibly
multivalued) time-series and serve the purpose of leveraging that structure. They also
make it possible for a model to accept inputs of varying size, which makes them perfect
for problems like natural language processing.[12]

In order to define the basic recurrent layer, let’s represent the data in yet another way.
The input will be a sequence of constant-sized real vectors xt ∈ Rn, t ∈ 1, T , which is
equivalent to a matrix Rn×T . The output will be a sequence of the same length4, possibly
with different dimensionality: ŷt ∈ Rm, t ∈ 1, T . Let’s also define nh to be the size of the
hidden units.

There are three weight matrices: Wx ∈ Rnh×n, Wh ∈ Rnh×nh , Wy ∈ Rm×nh , as well as
bias vectors b1 ∈ Rnh , b2 ∈ Rm Activation functions g1, g2 are also necessary. The recurrent
layer’s outputs are then defined as follows:

ht = g1(b1 +Whhht−1 +Whxxt)

ŷt = g2(b2 +Wyhht)

The output is differentiable with respect to all weights and biases, and the gradient
can be computed with a slight modification of the backpropagation algorithm, called back-
propagation through time.[19]

4.4.1. Gated recurrent layers

A major drawback of recurrent neural networks is that they don’t do well in capturing
long distance dependencies, which is a symptom of vanishing gradients in backpropagation
through time. To counteract this, the idea of gated recurrent layers was introduced, with
two varieties being especially useful – Gated Recurrent Units (GRU)[3] and Long
Short Term Memory (LSTM)[7] layers. They both introduce a slight modification to
the relations between inputs, hidden units and outputs.

Specifically, for GRUs the defining equations are as follows:

4It’s possible to make the length different, for example, by discarding some of the outputs
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zt = σ(Wxzxt +Whzht−1)

rt = σ(Wxrxt +Whrht−1)

h′t = tanh(Wxh′xt + rt �Whh′ht−1)

ht = zt � ht−1 + (1− zt)� h′t
yt = tanh(Whyht)

where σ(x) = 1
1+e−x is the sigmoid activation function and all of Wxz,Whz,Wxr,Whr,

Wxh′ ,Whh′ ,Why are learnable matrices of appropriate dimensions. zt and rt are called
the update gate and reset gate respectively as they control how much of the previous
state is to be preserved. It’s worth noting that ∀x ∈ R σ(x) ∈ (0, 1), so in particular
zt, rt ∈ (0, 1).

LSTMs are somewhat more complicated, with additional gates:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

yt = ot tanh(ct)

where it is called the input gate, ft – forget gate, ct – cell state, ot – output gate.

4.5. Regularization

An important issue to consider when training a neural network is the problem of generali-
zation. In the end, we want the model to perform well on previously unseen data, but the
training objective might favor just memorizing the entire training set, especially in the
case of very large models (with a high number of parameters). To counteract that, several
regularization methods can be used, the most commonly used of which include:

• L2 regularization, which involves adding to the loss function a term proportional to
the L2 norm of all the weights

• Dropout, which involves randomly setting some of the activations to 0 during the
training, which makes the training biased towards models that aren’t reliant on very
specific patterns
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Chapter 5

Experiments and results

This chapter will describe some of the machine learning models trained and evaluated on
the task described in Section 3.2.1, which is detection of jump-like anomalies in a window.

All of the following models are some variants of neural networks. The loss function
function that was used is the binary crossentropy weighted by the relative occurrence fre-
quency of the classes, optimized with the Adam algorithm, and regularized with dropout.
The window size is 20 points – it’s a size large enough to capture the entire phenomenon,
while at the same time being small enough not to cause large data requirements (as de-
scribed by the curse of dimensionality[9]). The models were implemented using Keras[2]
and the metrics – using scikit-learn[16].

The dataset consisted 15917 datapoints, out of which 10% (1592) were set aside for
validation and were not used for training. They were generated using Algorithms 1 and
2, with about 18% of them containing a jump anomaly, and the remaining being clear
of them (although they could contain other kinds of anomalies, which the models do not
consider by design).

5.1. Evaluation metrics

Due to the class imbalance (specifically, only about 18.4% of the datapoints have a positive
label) in the analyzed dataset, a simple accuracy score might be misleading, since a model
giving a constant negative prediction would attain an accuracy of about 82%. Thus, other
metrics had to be used to evaluate a model’s performance.

Let’s define TP to be the true positives as predicted by the model, TN – true negatives,
FP – false positives, FN – false negatives. Then we can define the following:
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Training data Validation data
Loss 0.193 0.203

Accuracy 0.912 0.912
Precision 0.777 0.794

Recall 0.729 0.724
F1 score 0.752 0.757

Table 5.1: Results obtained with the single-feature feedforward network

accuracy =
TP + TN

TP + TN + FP + FN

recall =
TP

TP + FN

precision =
TP

TP + FP

f1 score =
2

1
precision + 1

recall

5.2. Normalization

To make the training of the models easier, the data was normalized. The temperature
vectors were transformed by substracting the value at the first timestep of the window.
Wind velocities were transformed by substracting the mean and dividing by the standard
deviation of each component over the entire dataset. The angles (in radians) and the liquid
water content were not normalized, since all of their values are in the range [0, π2 ].

5.3. Single-feature models

These models used only a single record – the temperature on the lower UFT-2. In principle,
it should be enough, since the original labelling was based solely on it.

5.3.1. Feedforward network

In this model, the temperature vector was processed by a standard feedforward neural
network consisting of four ReLU-activated layers of sizes (50, 100, 100, 100), followed by
a sigmoid-activated output layer of size 1. After training it for 400 epochs, it reached the
loss and metric values as shown in Table 5.1.

5.3.2. Convolutional network

In this model, the temperature vector was processed by 1-dimensional ReLU-activated
convolutional layers with kernel size 3, and with layer sizes (20, 40, 50, 50), followed by a
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Training data Validation data
Loss 0.180 0.183

Accuracy 0.922 0.924
Precision 0.834 0.845

Recall 0.715 0.737
F1 score 0.770 0.787

Table 5.2: Results obtained with the single-feature convolutional network.

Training data Validation data
Loss 0.172 0.180

Accuracy 0.926 0.925
Precision 0.830 0.826

Recall 0.747 0.766
F1 score 0.786 0.795

Table 5.3: Results obtained with the single-feature LSTM network.

sigmoid-activated dense output layer of size 1. After training it for 400 epochs, it reached
the loss and metric values as shown in Table 5.2.

5.3.3. Recurrent networks

Two recurrent models were used here - identical with the exception of the recurrent layer
being either LSTM or GRU. They consist of tanh-activated recurrent layers maintaining
the length of the time series with sizes (20, 50, 50), followed by a sequence-to-vector
tanh-activated layer of size 30 and a sigmoid-activated output dense layer of size 1. After
training the LSTM network for 400 epochs and the GRU network for 370 epochs, they
reach the loss and metric values as shown in Table 5.3 (LSTM) and Table 5.4 (GRU).

1In principle, the model could learn to compute the angles based on the velocity vector, however this
approach could make the training easier since the model doesn’t have to learn a relatively complicated
function by itself.

Training data Validation data
Loss 0.159 0.172

Accuracy 0.931 0.928
Precision 0.829 0.810

Recall 0.788 0.816
F1 score 0.807 0.813

Table 5.4: Results obtained with the single-feature GRU network.
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Training data Validation data
Loss 0.223 0.239

Accuracy 0.903 0.898
Precision 0.836 0.851

Recall 0.585 0.563
F1 score 0.689 0.677

Table 5.5: Results obtained with the multi-feature feedforward network.

Training data Validation data
Loss 0.253 0.272

Accuracy 0.887 0.883
Precision 0.720 0.734

Recall 0.628 0.609
F1 score 0.671 0.665

Table 5.6: Results obtained with the multi-feature convolutional network.

5.4. Multi-feature models

These models utilised a more complete record, specifically, both temperature vectors, three
components of the velocity of the wind, two angles describing the angle of the wind1, and
the liquid water content.

5.4.1. Feedforward network

In this model, the input features were flattened into a vector to be processed by a standard
feedforward neural network consisting of four ReLU-activated layers of sizes (50, 100, 100,
100), followed by a sigmoid-activated output layer of size 1. After training it for 400 epochs,
it reached the loss and metric values shown in Table 5.5.

5.4.2. Convolutional network

In this model, the features were processed by 1-dimensional ReLU-activated convolutional
layers with kernel size 3, and with layer sizes (20, 40, 50, 50), followed by a sigmoid-
activated dense output layer of size 1. After training it for 300 epochs, it reached the loss
and metric values as shown in Table 5.6.

5.4.3. Recurrent networks

Again, two recurrent models were used here - identical with the exception of the recurrent
layer being either LSTM or GRU. They consist of tanh-activated recurrent layers mainta-
ining the length of the time series with sizes (20, 50, 50), followed by a sequence-to-vector
tanh-activated layer of size 30 and a sigmoid-activated output dense layer of size 1. After
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Training data Validation data
Loss 0.132 0.173

Accuracy 0.940 0.932
Precision 0.865 0.850

Recall 0.800 0.783
F1 score 0.829 0.815

Table 5.7: Results obtained with the multi-feature LSTM network.

Training data Validation data
Loss 0.137 0.167

Accuracy 0.943 0.933
Precision 0.885 0.872

Recall 0.791 0.760
F1 score 0.835 0.812

Table 5.8: Results obtained with the multi-feature GRU network.

training the LSTM network for 400 epochs and the GRU network for 370 epochs, they
reach the loss and metric values as shown in Table 5.7 (LSTM) and Table 5.8 (GRU).
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Chapter 6

Summary

Accuracy Feedforward Convolutional Recurrent LSTM Recurrent GRU
Single feature 0.912 0.924 0.925 0.928
Multi feature 0.898 0.883 0.932 0.933

Table 6.1: Accuracy values on the validation set for various models.

F1 score Feedforward Convolutional Recurrent LSTM Recurrent GRU
Single feature 0.757 0.787 0.795 0.813
Multi feature 0.677 0.665 0.815 0.812

Table 6.2: F1 score values on the validation set for various models.

In Chapter 2 I described the physical context of the obtained data and the problems
within it. Then, in Chapter 3 I built a precise mathematical description of the problem
I’m trying to solve in this work, which is detecting anomalies in this signal. In chapter 4 I
provided an overview of the machine learning methods used in solving that problem. Fi-
nally, in chapter 5 I described the specific algorithms I used for that purpose and evaluated
their performances.

A summary of the results described in the previous chapter can be seen in Tables 6.1
and 6.2. Accuracy is shown due to its simplicity and easy interpretability, even though
it is flawed when dealing with an imbalanced dataset. F1 score was chosen for the final
comparison because it is often used to counteract exactly that problem, and provides a
good balance between precision (i.e. trying to make the anomaly detections correct as
often as possible) and recall (i.e. trying to detect as many anomalies as possible).

Perhaps surprisingly, some models seem to work better with only the temperature
vector. This is most likely related to the aforementioned curse of dimensionality – the
amount of data necessary to build a model grows exponentially with the size of the features,
which is problematic with a limited dataset. If more labelled data was available, larger
models could be trained and they would be able to effectively leverage (or discard) the
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Figure 6.1: An example of a false negative in models’ predictions.

additional dimensions of the datapoints. However, this still suggests that pretty much all
the information needed to detect an anomaly is within the temperature signal itself. Wind
speed can be useful due to some possible correlations with the anomalies, but in the end,
it’s not the most predictive feature.

Regardless of whether one or multiple features were used, recurrent models generally
performed better than feedforward or convolutional ones. Feedforward networks are not
able to consider the temporal structure of the data, so they face a more difficult task
and need to learn similar features in various positions in time. Convolutional networks,
on the other hand, maintain the temporal invariability, but are unable to consider non-
local events, which could be necessary in some cases – for example, anomalies that are
characterized by the temperature value being different at the beginning and the end of
the window.

Recurrent networks, particularly LSTMs, were designed to solve both of these problems
– they include the temporal structure and are able to capture long-term dependencies.

Thus, it can be concluded that artificial intelligence techniques, especially recurrent
neural networks, can be of use in detecting the anomalies in ACTOS (and similar) data,
and also that in this particular scenario, the UFT-2 signal itself can suffice for that goal.
What’s more, it turns out that for the classification of this specific dataset, the tempera-
ture measurement itself is sufficient and doesn’t require additional features to attain high
accuracy scores.
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Figure 6.2: An example of a false positive in models’ predictions.

Some other valuable insights may be obtained by investigating the kinds of datapoints
that the models got wrong. In Figure 6.1 you can see a segment of the temperature data
with an anomaly that was mislabelled by both the single-feature feedforward and GRU
models, and in Figure 6.2 – a segment of the temperature data which wasn’t labelled as
an anomaly during the manual labelling, but was picked up by both of those models.

While it’s difficult to tell the exact cause those of mistakes, a reasonable guess might
be that in Figure 6.1, two opposite jumps occur not far from one another, but not close
enough for it to be considered a ’returning’ jump. The pattern in Figure 6.2 is more
interesting – upon reexamining the data in a fuller context, it turns out to be a region
that is difficult to classify, even manually. It is possible that it does in fact correspond
to an anomaly in the measurements, in which case it could be said that the student has
outgrown its teacher.
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